수렴구조의 역사

  • 한용현 (숙명여자대학교 수학과)
  • Published : 2001.12.01

Abstract

The topological structure of a topological space is completely determined by the data of convergence of filters on the space. We study the origin of convergence structure in the setting of filters and nets and their ramifications.

Keywords

References

  1. C. R. Paris v.177 Alexandrov, P.;P. Urysohn
  2. Math. Ann. v.175 Bemerkungen zu limitierten funktionenalgebren Binz, E.
  3. Ann. Acad. Sci. Fenn. Ser. A Ⅰ v.383 Funktionenr$\"{a}$ume in der Kategori der Limesr$\"{a}$ume Binz, E.;H.H. Keller
  4. General Topology Bourbaki, N.
  5. Math. Nachr. v.13 Zur $\"{A}$quivalenz von Moore-Smith Folgen und Filtern Bruns, G.;J. Schmidt
  6. C.R. Acad. Sc. Paris v.205 Th$\'{e}$orie des filtres; filtres et ultrafiltres Cartan, H.
  7. Annales Univ. Grenoble v.23 Convergences Choquet, G.
  8. Topological structures and filters Cook, C.H.
  9. Math. Ann. v.174 Regular convergence spaces Cook, C.H.;H.R. Fischer
  10. Trans. Amer. Mat. Soc. v.112 On sequential convergence Dudley, R.M.
  11. Math. Ann. v.137 Limesr$\"{a}$ume Fischer, H.R.
  12. Rend. del Circ. Mat di Palermo v.22 Sur quelques points du calcul fonctionnel Fr$\'{e}$chet, M.
  13. Lecture Notes in Math Calculus in vector spaces without norm Fr$\"{o}$licher, A.;W. Bucher
  14. Theory of Sets and Topology Beitr$\"{a}$ge zur Theorie der Limesr$\"{a}$ume G$\"{a}$hler, W.
  15. Math. Ann. v.173 Topologische R$\"{a}$ume, in denen alle Filter konvergieren Grimeisen, G.
  16. Thesis, Univ. of Greifswald GDR Untersuchungen zur Theorie der Limesr$\"{a}$ume Harbarth, K.
  17. Grundz$\"{u}$ge der Mengelehre Hausdorff, F.
  18. Math. Coll. Univ. Cape Town v.9 Cartesian closed topological categories Herrlich, H.
  19. General Topology Kelley, J.L.
  20. Fund. Math. v.54 Convergence functions and their related topologies Kent, D.C.
  21. Fund. Math v.65 Convergence quotient maps Kent, D.C.
  22. Lecture Note Ser.1 Algebras in Cartesian Closed Topological Categories Kim, C.Y.;S.S. Hong;Y.H. Hong;P.U. Park
  23. Czechoslovak. Math. J. v.17 no.92 On sequentially regular convergence spaces Koutnik, V.
  24. Math. Nachr. v.12 Limesr$\"{a}$ume und Kompttierung Kowalski, H.J.
  25. Archiv Math. v.20 Eine Bemerkun $\"{u}$ber endlich-dimensionale, separierte limitierte Vectorr$\"{a}$ume Kutzler, K.
  26. Amer. Journ. Math v.44 A general theory of limits Moore, E.H.;H.L. Smith
  27. Czechoslovak. Math. J. v.15 no.90 On convergence spaces and their sequential envelopes Novak, J.
  28. Ph. D.Thesis, Queens Univ. Continuous convergence in a Gelfand theory for topological algebras Schroder, M.
  29. Ens. Math. v.25 Sur les classes (L) de M.Fr$\'{e}$chet Urysohn, P.
  30. Math. Ann. v.152 Limesr$\"{a}$ume und Distributionen Wloka, J.