DOI QR코드

DOI QR Code

SOME CONVERGENCE THEOREM FOR AND RANDOM VARIABLES IN A HILBERT SPACE WITH APPLICATION

  • Received : 2014.08.12
  • Accepted : 2014.08.25
  • Published : 2014.09.25

Abstract

The notion of asymptotically negative dependence for collection of random variables is generalized to a Hilbert space and the almost sure convergence for these H-valued random variables is obtained. The result is also applied to a linear process generated by H-valued asymptotically negatively dependent random variables.

Keywords

Acknowledgement

Supported by : Howon University

References

  1. Araujo, A. and Gine, E., The central limit theorem for real and Banach valued random variables, John Wiley and Sons, 1980.
  2. Block, H.W., Savits, T.H. and Shaked, M., Some concepts of negative dependence, Ann. Probab., 10 (1982), 762-772.
  3. Brockwell, P. and Davis, R., Time Series Theory and Method, Springer, Berlin, 1987.
  4. Burton, R.M., Dabrowski, A.R. and Dehling, H., An invariance principle for weakly associated random vectors, Stoch. Proc. Appl., 23 (1986), 301-306. https://doi.org/10.1016/0304-4149(86)90043-8
  5. Joag-Dev, K. and Proschan, F., Negative association of random variables with applications, Ann. Statist., 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
  6. Kim, T.S., Ko, M.H. and Han, K.H., On the almost sure convergence for a linear process generated by negatively random variables in the Hilbert space, Stat. Probab. Lett., 78 (2008), 2110-2115. https://doi.org/10.1016/j.spl.2008.01.082
  7. Wang, J.F. and Lu, F.B., Inequalities for maximum partial sums and weak convergence for a class of weak dependent random variables, Acta. Math. Sin. Engl. Ser., 23 (2006), 127-136.
  8. Wang, J.F. and Zhang, L.X., A Berry-Esseen theorem and a law of the iterated logarithm for asymptotically negatively dependent sequences, Acta. Math. Sin. Engl. Ser., 22 (2007), 673-700.
  9. Yuan, D.M. and Wu, X.S., Limiting behavior of the maximum of the partial sum for asymptotically negatively dependent random variables under residual Cesaro alpha-integrability assumption, J. Statistical Plan. Infer., 140 (2010), 2395-2402. https://doi.org/10.1016/j.jspi.2010.02.011
  10. Zhang, L.X., A functional central limit theorem for asymptotically negatively dependent random fields, Ata. Math. Hung., 86 (2000a), 237-259. https://doi.org/10.1023/A:1006720512467
  11. Zhang, L.X., Central limit theorems for asymptotically negatively dependent random fields, Acta. Math. Sin. Engl. Ser., 16 (2000b), 691-710. https://doi.org/10.1007/s101140000084