Acknowledgement
Supported by : Howon University
References
- Araujo, A. and Gine, E., The central limit theorem for real and Banach valued random variables, John Wiley and Sons, 1980.
- Block, H.W., Savits, T.H. and Shaked, M., Some concepts of negative dependence, Ann. Probab., 10 (1982), 762-772.
- Brockwell, P. and Davis, R., Time Series Theory and Method, Springer, Berlin, 1987.
- Burton, R.M., Dabrowski, A.R. and Dehling, H., An invariance principle for weakly associated random vectors, Stoch. Proc. Appl., 23 (1986), 301-306. https://doi.org/10.1016/0304-4149(86)90043-8
- Joag-Dev, K. and Proschan, F., Negative association of random variables with applications, Ann. Statist., 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
- Kim, T.S., Ko, M.H. and Han, K.H., On the almost sure convergence for a linear process generated by negatively random variables in the Hilbert space, Stat. Probab. Lett., 78 (2008), 2110-2115. https://doi.org/10.1016/j.spl.2008.01.082
- Wang, J.F. and Lu, F.B., Inequalities for maximum partial sums and weak convergence for a class of weak dependent random variables, Acta. Math. Sin. Engl. Ser., 23 (2006), 127-136.
- Wang, J.F. and Zhang, L.X., A Berry-Esseen theorem and a law of the iterated logarithm for asymptotically negatively dependent sequences, Acta. Math. Sin. Engl. Ser., 22 (2007), 673-700.
- Yuan, D.M. and Wu, X.S., Limiting behavior of the maximum of the partial sum for asymptotically negatively dependent random variables under residual Cesaro alpha-integrability assumption, J. Statistical Plan. Infer., 140 (2010), 2395-2402. https://doi.org/10.1016/j.jspi.2010.02.011
- Zhang, L.X., A functional central limit theorem for asymptotically negatively dependent random fields, Ata. Math. Hung., 86 (2000a), 237-259. https://doi.org/10.1023/A:1006720512467
- Zhang, L.X., Central limit theorems for asymptotically negatively dependent random fields, Acta. Math. Sin. Engl. Ser., 16 (2000b), 691-710. https://doi.org/10.1007/s101140000084