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CONVERGENCE OF THE NEWTON METHOD
FOR AUBIN CONTINUOUS MAPS

Ioannis K. Argyros

Abstract. Motivated by optimization considerations we revisit the work

by Dontchev in [7] involving the convergence of Newton’s method to a

solution of a generalized equation in a Banach space setting. Using the
same hypotheses and under the same computational cost we provide a

finer convergence analysis for Newton’s method by using more precise
estimates.

1. Introduction

In this study we are concerned with the problem of approximating a solution
x of the generalized equation of the form

y ∈ f(x) + F (x), x ∈ X (1)

where y is a given parameter, f is a Fréchet–differentiable operator between
Banach spaces X, Y and F is a map, possibly set-valued from X to 2Y with a
closed graph. If F = {0}, then (1) becomes an equation. Moreover if F = Ri

+,
the positive orthant in Ri, then (1) is a system of inequalities. Furthermore, if
F is a normal cone to a subset of X, then (1) is a variational inequality.

The most popular method for generating a sequence approximating x is
undoubtedly Newton’s method

y ∈ f(xn) + f ′(xn)(xn+1 − xn) + F (xn+1), (2)

where f ′(x) denotes the Fréchet–derivative of the operator f evaluated at x.

A survey on local as well as semilocal convergence results for Newton’s
method (2) can be found in [1]–[11] and the references there.

Here motivated by optimization considerations we revisit the work by Dontchev
in [7]. Using the same hypotheses but more precise estimates and under the
same computational cost we provide a finer convergence analysis for Newton’s
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method (2).

2. Local convergence analysis of method (2)

We need to restate some terminology inaugurated in [1]. The distance from
a point x ∈ X to a set S ⊂ X is given by

dist(x, S) = inf{‖x− y‖, y ∈ S}.

The excess e from the set S to the set W is given by

e(W,S) = sup{dist(x, S), x ∈W}.

Given F : X −→ 2Y , the inverse map F−1 is defined as F−1(y) = {x ∈ X |
y ∈ F (x)} and Graph F is the set {(x, y) ∈ X × Y , y ∈ F (x)}.

Aubin in [1] first introduced the concept of Aubin continuity: The map
Γ : X −→ 2Y is said to be pseudo–Lipschitz about (x0, y0) ∈ Graph Γ with
modulus M if there exist neighborhoods V of y0 and U of x0 such that

e
(
Γ(y1) ∩ V,Γ(y2)

)
≤M‖y1 − y2‖ for all y1, y2 ∈ V. (3)

We need the auxiliary result:

Lemma 1. Let (x∗, y∗) ∈ Graph(f + F ), let f be a Fréchet–differentiable
operator in an open neighborhood of x∗, let f ′ be continuous at x∗ and let
F have a closed graph. Moreover assume that the map (f + F )−1 is Aubin
continuous at (y∗, x∗). Then there exist positive constants α, β and M such
that for every

x ∈ U(x∗, α) = {x ∈ X | ‖x− x∗‖ ≤ α},
if

Gx =
[
f(x) + f ′(x)(· − x) + F (·)

]−1
,

then

e
(
Gx(v) ∩ U(x∗, α), Gx(w)

)
≤M‖v − w‖ for all v, w ∈ U(y∗, β). (4)

Proof. The map T = [f(x∗) + f ′(x∗)(· − x∗) + F (·)]−1 is Aubin continuous at
(y∗, x∗) [5]. Let a, b and M ′ be the corresponding constants. Choose ε0 > 0
such that

M ′ε0 < 1, (5)

α > 0 such that

‖f ′(x)− f ′(x∗)‖ ≤ ε0 for all x ∈ V ((x∗, α), (6)

and β > 0 such that

β + 4ε0α ≤ b and
2M ′β

1−M ′ε0
≤ α. (7)
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The rest of the proof follows exactly as in Lemma 1 in [7, p. 388] by simply
replacing ε used there by ε0 used here and setting

M =
M ′

1−M ′ε0
. (8)

That completes the proof of Lemma 1. �

We can now show the following local convergence result for Newton’s method:

Theorem 1. Let x∗ be a solution of equation (1) for y = 0, let f be a Fréchet-
differentiable operator in an open neighborhood D of x∗, and let f ′ be continuous
in D. Let F have a closed graph.

Then the following are equivalent:
(a) The map (f + F )−1 is Aubin continuous at (0, x∗);
(b) There exist positive constants σ, b, and c such that for every y ∈ U(0, b)

and for every x0 ∈ U(x∗, σ) there exists a Newton sequence {xn} start-
ing from x0 which converges to a solution x of (1) for y.

Moreover, if x0 is a solution of (1) for y0, then

‖x− x0‖ ≤ c‖y − y0‖. (9)

Proof. (1) (b) ⇒ (a) follows from the definition of Aubin continuity.
(2) (a) ⇒ (b). We use Lemma 1. Let α, β and M be the constants introduced
in Lemma 1. Define mapping Gx on U(x∗, α) by

Gx =
[
f(x) + f ′(x)(· − x) + F (·)

]−1
.

Let ε > 0 such that
Mε < 1, (10)

and choose a > 0, σ > 0, b > 0 such that U(x∗, a) ⊆ D and

‖f ′(v)− f ′(w)‖ ≤ ε for all v, w ∈ U(x∗, a), (11)

σ ≤ α, 2σ
1−Mε

< a, 2εσ < β (12)

b(1 +Mε) + 2εσ ≤ β and
Mb+ 2σ
1−Mε

≤ a. (13)

The rest of the proof follows exactly as in Theorem 1 in [7, p. 390] with

c =
M

1−Mε
. (14)

That completes the proof of Theorem 1. �

If f ′ is Lipschitz continuous about x∗, then the Aubin continuity implies the
existence of a Q–quadratically convergent Newton sequence:
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Theorem 2. Let x∗ be a solution of (1) for y = 0, let f be a Fréchet–
differentiable operator in an open neighborhood D of x∗, let f ′ be L–Lipschitz
continuous in D. Let F have closed graph and let (f +F )−1 be Aubin continu-
ous at (0, x∗). Then there exist positive constants σ, b and γ such that for every
y ∈ U(0, b) and for every x0 ∈ U(x∗, σ) there exists a sequence {xn} (n ≥ 0)
generated by Newton’s method (2) and starting at x0 converging to a solution
x of (1) for y so that

‖xn+1 − x∗‖ ≤ γ‖xn − x∗‖2 (n ≥ 0), (15)

where,

γ ≥ ML

2
. (16)

Proof. Exactly as the proof of Theorem 2 in [7, p. 393]. �

Remark 1. In view of (6) and (11) we have that

ε0 ≤ ε (17)

holds in general and
ε

ε0
can be arbitrarily large [2], [3]. Note that we can cer-

tainly set ε ≥ 2ε0. If ε0 = ε our results reduce to the corresponding ones in [7].
Otherwise our results constitute an improvement under the same hypotheses
and computational cost. Indeed denote by M , c, γ the corresponding to M , c,
γ constants used in [7], respectively. That is

M =
M ′

1−M ′ε
, (18)

c =
M

1−Mε
, (19)

and

γ ≥ ML

2
. (20)

If strict inequality holds in (17) it follows by (8), (13), (15), (18) and (19) that

M < M, (21)

c < c, (22)

and

γ < γ. (23)

Due to (4), (9), (15) and (21)–(23) the claims made in the introduction are
satisfied. Hence the usefulness of our results follows.
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