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ON COVERING AND QUOTIENT MAPS

FOR IK-CONVERGENCE IN TOPOLOGICAL SPACES

Debajit Hazarika and Ankur Sharmah

Abstract. In this article, we show that the family of all IK-open sub-
sets in a topological space forms a topology if K is a maximal ideal.

We introduce the notion of IK-covering map and investigate some basic

properties. The notion of quotient map is studied in the context of IK-
convergence and the relationship between IK-continuity and IK-quotient

map is established. We show that for a maximal ideal K, the properties
of continuity and preserving IK-convergence of a function defined on X

coincide if and only if X is an IK-sequential space.

1. Introduction

The concept of usual convergence of a sequence in a space can be addressed
by two fundamental conditions: first, if the sequence is eventually contained
in each open neighborhood of a point and secondly, if the sequence possesses a
co-finite tail that is convergent to the point. These equivalent notions for usual
convergence have been the core idea for introducing some distinct notions like
I-convergence, I∗-convergence and IK-convergence in the context of an ideal
topological space. The former two notions were introduced in the year 2000,
by Kostyrko et al. [5] and the later was introduced by Macaz and Sleziak [9],
as an extension of I∗-convergence. In a nutshell, the theory of generalized
convergence has attracted many researchers. For some remarkable contribu-
tions in this direction, refer to [2,3,5,6,15,16] for ideal convergence and [7] for
G-convergence by Lin et al.

At the same time, mappings such as continuous maps, quotient maps and
covering maps [1, 8] have been utilised as vital tools in characterising different
properties of associated parent topological spaces. In the context of statistical
convergence, Renukadevi and Prakash studied some of their interrelationships
[11, 12]. Recently, some articles have focused on the investigation of different
maps in an ideal topological space [10, 17, 19]. These developments along with
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the prolonged study of IK-convergence in the last decade [2, 3, 13] anticipated
an active role of mappings in the IK-context, in characterizing the underlying
spaces. So, as a relevant continuation to the above work, we take up the study
of different mappings along with the more general non-axiomatised form of
convergence, i.e., IK-convergence as an extension to prior work.

The main purpose of this article is to study the IK-covering map, the IK-
continuous map, the IK-quotient map and similar maps. We investigate them
to establish some properties of the spaces as well as correlations among the
mappings.

For our topological terminologies, notations and results, one may refer to
[4]. A family of subsets I of ω is said to be a proper non-trivial ideal (I 6= φ
and ω /∈ I) if

(i) I, J ∈ I, then I ∪ J ∈ I.
(ii) J ⊂ I and I ∈ I, then J ∈ I.

For an ideal I in P (ω), we have I? := {I ⊂ ω : Ic ∈ I} and also, I+

comprises of all subsets of ω not in I. An ideal I is said to be a maximal ideal
on ω if M ⊂ ω, then either M ∈ I or M c ∈ I.

Remark 1.1 ([13, Remark 1.2]). Two ideals I and K on a set S satisfy the
ideality condition if and only if S 6= I ∪K for all I ∈ I, K ∈ K.

Lemma 1.2 ([19, Lemma 3.6]). Let P ⊂ X, where X a topological space and
I be an ideal. Then the following are equivalent for a sequence {an} in X.

(1) P is an I-open subset of X.
(2) {n ∈ ω : an ∈ P} /∈ I, if I − lim an = a ∈ P .
(3) |{n ∈ ω : an ∈ P}| = ω, if I − lim an = a ∈ P .

In Section 2, we obtain a condition on the ideal such that the family of
IK-open subsets of a topological space forms a topology (Remark 2.10). In
Section 3, we introduce (IK,J L)-covering map defined on a topological space
for given ideals I,K,J ,L in ω and with the assumption of ideality condition
among ideals, some properties are obtained. In Section 4, we show that for a
maximal ideal K, the properties of continuity and preserving IK-convergence
of a function defined on X coincides if and only if X is an IK-sequential space
(Theorem 4.6). In the same section, we define an (IK,J L)-quotient map and
obtain several properties. The role of maximality of ideals is investigated to
establish a relationship among different mappings (Theorem 4.15).

Unless mentioned specifically, X, Y are arbitrary topological spaces and I,
K, J and L are proper ideals on the set of natural numbers ω.

2. Some preliminary results

In this section, we review some basic results in IK-convergence and obtain
a few new ones. We begin with some prior discussions in the context of IK-
convergence as follows: a sequence {an} in X is IM-convergent to a ∈ X if
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there exists a set A ∈ I∗ such that the sequence {bn}n∈ω defined as:

bn =

{
an, n ∈ A
a, n /∈ A

is M-convergent to a, where M is an ideal convergence mode.
If M = K, then {an} is IK-convergent [9] to a point a ∈ X. In particular,

if I = K, it gives the condition of I-convergence [5] for the sequence {an} in
X. Also, for K = Fin (the ideal containing all the finite subsets of ω), we say
that {an} is I∗-convergent [5] to a ∈ X.

Reader may refer to [5] for definitions of I-convergence and I∗-convergence.

Lemma 2.1 ([9, Lemma 2.1]). If I and K are two ideals on a set S and
q : S → X is a function such that K − lim q = a, then IK − lim q = a.

Definition 2.2 ([13, Definition 3.1]). Let X be a topological space and O,F ⊆
X. Then

(1) O is said to be IK-open if no sequence in X \O has an IK-limit in O.
Otherwise, for each sequence {an : n ∈ ω} ⊆ X\O with an →IK a ∈ X,
then a ∈ X \O.

(2) A subset F ⊆ X is said to be IK-closed if X \ F is IK-open in X.

Lemma 2.3 ([13, Observation 3.3]). Let M1,M2 be two convergence modes
in a topological space X such that M1-convergence implies M2-convergence.
Then O ⊆ X is M2-open implies that O is M1-open.

Proposition 2.4 ([13, Proposition 2.1]). Let X be a topological space and
f : S → X be a function (generalized sequence). Let I,K be two ideals on S
such that I ∪ K is an ideal. Then

(i) IK∗ − lim f(s) = a if and only if (I ∪ K)∗ − lim f(s) = a.
(ii) IK − lim f(s) = a =⇒ I ∪K − lim f(s) = a.

Lemma 2.5. Let P be a subset of a topological space X. Then, the following
are equivalent for a sequence {an} in X.

(1) P is an IK-open subset of X.
(2) {n ∈ ω : xn ∈ P} /∈ K, if IK − lim an = a ∈ P .
(3) |{n ∈ ω : xn ∈ P}| = ω, if IK − lim an = a ∈ P .

Proof. (1) =⇒ (2) It follows from the definition of IK-open subsets.
(2) =⇒ (3) Since Fin ⊂ K, it follows that |{n ∈ ω : an ∈ P}| = ω.
(3) =⇒ (1) Contrapositively, let P be not IK-open. Then X \ P is not

IK-closed, and there is a sequence {an} ⊆ X \ P with IK − lim an = a ∈ P .
This is a contradiction to our assumption. �

Theorem 2.6. In a topological space, arbitrary union of IK-open sets is IK-
open.
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Proof. Let {Uα}α∈Λ be an arbitrary family of IK-open sets. Let {an} be a
sequence in X such that IK − lim an = a ∈

⋃
α∈Λ Uα. Then there exists an

element α ∈ Λ for which an →IK a ∈ Uα. So, by Proposition 2.8, there exists
K ∈ K such that {an : n ∈ ω \K} ∈ Uα. Thus, {an : n ∈ ω \K} ∈

⋃
α∈Λ Uα.

Thus,
⋃
α∈Λ Uα is an IK-open set. �

Definition 2.7. For a given ideal I of ω and a sequence {an} in X, the set
{n ∈ ω : an ∈ ω \ I, I ∈ I} is said to be an I-tail of X.

Proposition 2.8. Let K be a maximal ideal of ω and P ⊂ X. Then P is
IK-open if and only if each IK-convergent X-valued sequence converging to a
point in P has a K-tail in P .

Proof. Consider P to be IK-open and {an} be IK-convergent to a ∈ P . Then
we have E = {n ∈ ω : an ∈ P} /∈ K. Since K is maximal, therefore, ω \ E =
{n ∈ ω : an ∈ P} ∈ K∗. Thus, {an : n ∈ ω \ E} ∈ P .

Conversely, suppose that P is not IK-open. Then, for a sequence {an} in
X \ P such that IK − lim an = a ∈ P , we have that {n ∈ ω : an ∈ P} ∈ K∗.
It is clear that {n ∈ ω : an /∈ P} ∈ K. Consider, E = {n ∈ ω : an /∈ P}, then
{an : n ∈ ω \ E} ∈ P . But an ∈ X \ P , so, E must be equal to ω. This is a
contradiction to the fact that K is a proper ideal. Hence, P is IK-open. �

Theorem 2.9. In a topological space X, if J be a maximal ideal and P , Q
are two IJ -open subsets of X, then P ∩Q is IJ -open.

Proof. Let {an} be a sequence in X such that IJ − lim an = a ∈ P ∩Q. Then,
an →IJ a ∈ P and an →IJ a ∈ Q simultaneously. By Proposition 2.8, there
exist E,F ∈ J such that the corresponding J -tails which are {an : n ∈ ω \E}
and {an : n ∈ ω\F} belong to P and Q, respectively. Thus, for E∪F ∈ J , the
J -tail of {an}, that is, {an : n ∈ ω \ E ∪ F} ∈ P ∩ Q. Hence, by Proposition
2.8, P ∩Q is IJ -open. �

Remark 2.10. If J be a maximal ideal, then

(i) Consider the set τIJ : the collection of all IJ -open subsets of X, then
from Theorems 2.9 and 2.6, we observe that (X, τIJ ), is a topological
space. (X, τIJ ) is said to be the IJ -sequential coreflection of the space
X and we denote it by IJ -sX.

(ii) The IJ -sequential coreflection of a space X is an IJ -sequential space:
for each A ⊂ X, by Proposition 2.8, A is IJ -open in IJ -sX if and
only if A is IJ -open in X if and only if A is open in IJ -sX. Thus,
IJ -sX is an IJ -Sequential space.

(iii) X is an IJ -Sequential space if and only if IJ -sX = X.

Definition 2.11. P ⊂ X is said to be an IK-sequential neighborhood of a
point a ∈ X whenever a sequence {an}n∈ω is IK-convergent to a, the sequence
{an}n∈ω possesses an I-tail which is K-eventually in P , i.e., there exists M ∈ I∗
with {n ∈M : an /∈ P} ∈ K.



ON COVERING AND QUOTIENT MAPS FOR IK-CONVERGENCE 271

Remark 2.12. If J is a maximal ideal of ω and P ⊂ X, then P is IJ -open if
and only if P is an IJ -sequential neighborhood of each of its points.

Lemma 2.13. Let Xbe a topological space and P,Q ⊂ X. Then

(1) If P ⊂ Q, then P is an IK-sequential neighborhood of a =⇒ Q is an
IK-sequential neighborhood of a.

(2) If P , Q are IK-sequential neighborhoods of a, then P ∩ Q is an IK-
sequential neighborhood of a.

Proof. We prove (2). Let us assume that P , Q are two IK-sequential neigh-
borhoods of a in X. Consider a ∈ (P ∩ Q) with an →IK a ∈ P ∩ Q. Then
an →IK a ∈ P and an →IK a ∈ Q. So, there exist M1,M2 ∈ I∗ such that {n ∈
M1 : an /∈ P} ∈ K and {n ∈M2 : an /∈ Q} ∈ K. Now, for M = M1 ∩M2 ∈ I∗,
{n ∈ M : an /∈ (P ∩ Q)} ⊂ {n ∈ M1 : an /∈ P} ∩ {n ∈ M2 : an /∈ Q} ∈ K. In
essence, P ∩Q is an IK-sequential neighborhood of a. �

Proposition 2.14. Let J be a maximal ideal of ω and P ⊂ X. If P is not an
IJ -sequentially neighborhood of a, then there exists a sequence {an} in X \ P
such that an →IJ a.

Proof. Suppose that P is not an IJ -sequentially neighborhood of a. Then there
exists a sequence {an} in X such that an →IJ a. So, there exists M ∈ I∗ for
which {n ∈ M : an /∈ P} /∈ J . By maximality of J , {n ∈ M : an /∈ P} ∈
J ∗ =⇒ {n ∈ ω : an /∈ P} /∈ J ∗ =⇒ {n ∈ ω : an ∈ P} ∈ J . Consider
J = {n ∈ ω : an ∈ P}. Since J is proper, P 6= X. Let b ∈ X \ P . Define a
sequence {bn} such that bn = b, if n ∈ J and bn = an if n ∈ ω \ J . But then
bn ∈ X \ P and bn →IJ b. This is a contradiction. �

The following operators on P are called IJ -closure and IJ -interior of P ⊂
X.

[P ]IJ = {a ∈ X : there exists a sequence {an} in P with an →IJ a}.
(P )IJ = {a ∈ X : P is an IJ -sequential neighborhood of a}.

For a maximal ideal J , it is clear that [φ]IJ = φ. From the definitions, it is
observed that the hierarchy P o ⊂ (P )IJ ⊂ P ⊂ [P ]IJ ⊂ P̄ holds.

Lemma 2.15. Consider J to be a maximal ideal and P , Q ⊂ X. Then

(i) [P ]IJ = X \ (X \ P )IJ .
(ii) If P ⊂ Q, then (Q)IJ ⊂ (P )IJ and [Q]IJ ⊂ [P ]IJ .
(iii) (P ∩Q)IJ = (P )IJ ∩ (Q)IJ and [P ∪Q]IJ = [P ]IJ ∪ [Q]IJ .

Proof. Let J be a maximal ideal and P , Q ⊂ X.
(i) Suppose that a ∈ X \ (X \P )IJ . Then a /∈ (X \P )IJ , i.e., (X \P ) is not

an IJ -sequential neighborhood of a. Then by Proposition 2.14, there exists a
sequence {an} in P such that an →IJ a, that means a ∈ [P ]IJ . Conversely,
let a ∈ [P ]IJ , then there exists a sequence {an} in P such that an →IJ a.
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That is, {n ∈ ω : an ∈ X \ P} = φ. But then (X \ P ) is not an IJ -sequential
neighborhood of a. So, a /∈ (X \ P )IJ . Thus, a ∈ X \ (X \ P )IJ .

(ii) Since P ⊂ Q in X, then by Lemma 2.13(1), we obtain that (Q)IJ ⊂
(P )IJ and [Q]IJ ⊂ [P ]IJ .

(iii) Since (P ∩ Q) ⊂ P and (P ∩ Q) ⊂ Q, then (P ∩ Q)IJ ⊂ (P )IJ and
(P ∩Q)IJ ⊂ (Q)IJ . Then (P ∩Q)IJ ⊂ (P )IJ ∩ (Q)IJ . Again, suppose that
a ∈ (P )IJ ∩ (Q)IJ . So, a ∈ (P )IJ and a ∈ (Q)IJ . Hence, P and Q both are
IJ -sequential neighborhoods of a in X. Again, by Lemma 2.13(2), we have
P ∩Q is an IJ -sequential neighborhood of a in X. Thus, a ∈ (P ∩Q)IJ .

Now, consider X \ P and X \ Q instead of P and Q, respectively, then
we obtain ((X \ P ) ∩ (X \ Q))IJ = (X \ P )IJ ∩ (X \ Q)IJ . Therefore, we
have [P ∪ Q]IJ = X \ (X \ (P ∪ Q)IJ ) = X \ ((X \ P ) ∩ (X \ Q))IJ =
X \ ((X \ P )IJ ∩ (X \Q)IJ ) = (X \ (X \ P )IJ )∩ (X \ (X \Q)IJ ) = [P ]IJ ∪
[Q]IJ . �

3. IK-covering property

The concept of covering map has recently been introduced as an ideal se-
quence covering map or an I-sequence covering map [10, 18] in the context of
ideal convergence. In this section, we define the notion of (IK,J L)-sequence
covering map extending the idea of ideal sequence covering map.

Definition 3.1. Let X and Y be two topological spaces and let I, K, J and
L are proper ideals. Then q : X → Y is said to be an (IK,J L)-sequence
covering map if for a sequence {bn} such that bn →JL b ∈ Y , then there exists
an ∈ q−1(bn) for each n ∈ ω such that an →IK a ∈ q−1(b).

These are generalizations of the covering maps defined in [10,18].

Proposition 3.2. Let X, Y and Z be topological spaces. Then

(a) If p : X → Y is an (IK,MN )-sequence covering map and q : Y → Z
is an (MN ,J L)-sequence covering map, then q ◦ p is an (IK,J L)-
sequence covering map.

(b) Finite product of (IK,J L)-sequence covering maps is an (IK,J L)-
sequence covering map.

(c) Restriction of an (IK,J L)-sequence covering map is an (IK,J L)-seq-
uence covering map.

Proof. (a) Let us consider a sequence cn →IJ c in Z. By the (MN ,J L)-
sequence covering property of q, there exists bn ∈ q−1(cn), for each n, such
that the sequence bn →MN b ∈ q−1(c). Again, by the (IK,MN )-sequence
covering property of p, there exists an ∈ p−1(bn) ∈ (p ◦ q)−1(cn) such that
an →IK a ∈ q−1(b) ∈ (p ◦ q)−1(c).

(b) Let qi : Xi → Yi be an (IK,J L)-sequence covering map for each

i = 1, 2, . . . , N0. Consider the product map
∏N0

i=1 qi :
∏N0

i=1Xi →
∏N0

i=1 Yi.

Now suppose that {(bi,n)}n∈ω is a sequence in
∏N0

i=1 Yi, J L-converging to (bi)
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in
∏N0

i=1 Yi. Now, for each i ∈ {1, 2, 3, . . . , N0}, bi,n→JL bi ∈ Yi. By our

assumption, there exists ai,n ∈ q−1(yi,n) for each n ∈ ω such that the se-

quence ai,n →IK ai ∈ Xi. Hence, the sequence {(ai,n)}n∈ω ∈
∏N0

i=1Xi is

IK-convergent to (ai) ∈
∏N0

i=1Xi.
(c) Consider an (IK,J L)-sequence covering map q from X to Y . Suppose

q∣∣q−1(H)
is a restriction of q, where H ⊂ Y . Consider a sequence {qn} such that

bn →J b ∈ H =⇒ bn →J b in Y . By our assumption, there exists a sequence
{an}, an ∈ q−1(bn) ⊂ q−1(H), for each n such that an →IJ a ∈ q−1(b) ⊂
q−1(H), i.e., q∣∣q−1(H)

is an (IK,J L)-sequence covering map. �

Theorem 3.3 ([14]). Let {(Xα, τα) : α ∈ Λ} be an indexed family of topological
spaces. Let X =

∏
α∈ΛXα be the product space and {xα(s)} be a function in

Xα for each α ∈ Λ. Then {xα(s)} is IK-convergent to pα, for all α ∈ Λ if and
only if {(xα(s))α∈Λ} is IK-convergent to (pα)α∈Λ.

Proposition 3.4. Arbitrary product of (IK,J L)-sequence covering maps is an
(IK,J L)-covering map.

Proof. This proof immediately follows from Theorem 3.3. �

Theorem 3.5. For X, Y be two topological spaces and I, K, J , L be proper
ideals of ω. If q is an (IK,J L)-covering compact function from X to Y and
∃ a disjoint sequence of infinite subsets of ω, {Qn} where Qn /∈ I,K for each
n. Then for b ∈ Y , ∃a ∈ q−1(b) such that O is an open neighborhood of
a =⇒ q(O) is a sequential neighborhood of b, provided I ∪ K is an ideal.

Proof. Contrapositively, let there be an element b in Y for which every a ∈
q−1(b) possesses neighborhood Ox of a such that q(Ox) is not a sequential neigh-
borhood of b. By our assumption, q−1(b) is compact in X and also q−1(b) ⊂
∪a∈q−1(b)Oa. So, we have a1, a2, . . . , an0

∈ q−1(b) for which q−1(b) ⊂ ∪n0
i=1Oai .

Again, the set q(Oam) is not a sequential neighborhood of b. Consider the
sequence {bm,n}∞n=1 in Y where bm,n /∈ q(Oam) for all m ∈ {1, 2, 3, . . . , n0},
n ∈ ω such that bm,n → b. We define a sequence {bn} as follows: Let
bk = bm,k if k ∈ Mm, m ∈ {1, 2, 3, . . . , n0} and bk = b, otherwise. It im-
plies that bk converges to b which further implies that bk →JL b. By our
assumption on q, there exists ak ∈ q−1(bk) for each k such that the sequence
ak →IK a ∈ q−1(b). So, a ∈ q−1(b) ⊂ ∪n0

i=1Oai . That way ∃m0 for which
a ∈ Oam0

and the set {k : ak /∈ Oam0
} ∈ I ∪ K which implies that the set

{k : q(ak) /∈ q(Oam0
)} ∈ I ∪K. But, Mm0

⊂ {k : bk /∈ q(Oam0
)} ∈ I ∪K. Since

Mm0 /∈ I ∪K, that is a contradiction. Then q(O) is a sequential neighborhood
of b. �

Theorem 3.6. Let X be a strongly Frechet space with property ωD. If q : X →
Y is a closed and (IK,J L)-covering map, then Y is strongly Frechet, provided
I ∪ K is an ideal.
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Proof. It follows directly from Theorem 3.9 in [10] and Proposition 2.4. �

4. IK-continuity and (IK,J L)-quotient map

In this section, we study IK-continuous maps defined on a topological space.
The IK-continuous maps are the generalization of I-continuous maps [19] de-
fined by Zhou et al.

Definition 4.1. Consider a mapping q : X → Y , where X and Y are two
topological spaces. Then for two given ideals I and K on ω, we have the
following definitions.

(1) q is said to be possesses the property of preserving IK-convergence if
for a given sequence {an} in X with IK− lim an = a ∈ X, the sequence
{q(an)} is IK-convergent to q(a).

(2) q is an IK-continuous map if O is an IK-open set in Y , then q−1(O) is
IK-open in X.

Theorem 4.2. For a given mapping q : X → Y , where X, Y be topological
spaces. Then

(1) The property of continuity of q implies that of property of preserving
IK-convergence [13].

(2) q preserves IK-convergence implies that q is an IK-continuous map.

Proof. Consider the mapping q : X → Y . Then
(1) Reader may refer to [13, Theorem 3.11] for the proof.
(2) Let us assume that q possesses the property of preserving IK-convergence

and let O be IK-closed in Y . Consider q−1(O) to be non-IK-closed in X.
Therefore, there exists a sequence an →IK a /∈ q−1(O). Then IK− lim q(an) =
q(a) but q(a) /∈ O. This is a contradiction. Hence the result follows. �

For a maximal ideal J on ω, the converse of Theorem 4.2(2) is also true.
Suppose that q is IJ -continuous and the sequence an →IJ a in X. Let O be an
open neighborhood of q(a). Then, q−1(O) is IJ -open in X containing a. But,
by Remark 2.12, there exists M ∈ I∗ such that {n ∈ M : an /∈ q−1(O)} ∈ J .
Hence, {n ∈M : q(an) /∈ O} ∈ J .

Theorem 4.3. Consider a mapping q : X → Y , where X and Y are two
topological spaces. Then the following are equivalent.

(1) q is a continuous map.
(2) q possesses the property of preserving IK-convergence.
(3) q is IK-continuous.

Proof. (1) =⇒ (2) Reader may refer to Theorem 4.2(1).
(2) =⇒ (1) Let q possess the property of preserving IK-convergence. If

possible, let q be not continuous. Then, there is an open set O ⊂ Y such that
q−1(O) is not open in X. So, q−1(O) is not IK-open in X. That means there
exists a sequence {an} in X \q−1(O) which IK-converges to ξ ∈ f−1(O). Thus,
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{f(an)} is a sequence in the closed set Y \ O which does not IK-converges to
q(ξ) ∈ O, as O is an IK-open subset of Y . Hence, q does not possess the
property of preserving IK-convergence.

(3) =⇒ (1) Let q be an IK-continuous map and let H be an arbitrary closed
set in Y . Then H is IK-closed in Y . Since q is an IK-continuous map, q−1(H)
is IK-closed in X. As the space X is IK-sequential, so, q−1(H) is closed in X.
Thus, q is a continuous map. �

Corollary 4.4. Let X be a sequential space. Let q : X → Y be a mapping
from a sequential space X to a topological space Y . Then the following are
equivalent.

(1) q is a continuous map.
(2) q possesses the property of preserving IK-convergence.
(3) q is an IK-continuous map.
(4) q is a sequentially continuous map.

Proof. The proof follows immediately, as each sequential space is an I-sequen-
tial space and the notions of continuity and sequentially continuity coincide in
a sequential space. �

In view of the above, we now have the following question.

Question 4.5. In Theorem 4.3, whether the condition of X to be an IK-
sequential space is necessary for the properties of continuity and preserving
IK-convergence to coincide?

Answer to Question 4.5 is in the affirmative whenever K is a maximal ideal:
Let us assume that X is not a IK-sequential space. Then, consider the map
i : (X, τ) → (X, τIK), where τIK is as mentioned in Remark 2.10. Since X is
not IK-sequential, the topology τIK is finer than τ . Hence the identity map
i : τ → τIK is not continuous. Suppose {xn} is IK-convergent to y in (X, τ).
Then every open neighborhood of P of y in (X, τIK) is IK-open in (X, τ). So, P
contains a K-tail of {xn} by Proposition 2.8, that is, {n ∈ ω : xn ∈ P} ∈ K∗, so
{n ∈ ω : xn /∈ P} ∈ K. Since A is arbitrary, so, xn →IK y in (X, τIK). Hence,
the properties of continuity and preserving IK-convergence do not coincide.

We, therefore, have the following result.

Theorem 4.6. Let q : X → Y be a function and let K be a maximal ideal.
The following are equivalent.

(i) X is an IK-sequential space.
(ii) q is a continuous map if and only if it possesses the property of pre-

serving IK-convergence.

4.1. (IK,J L)-quotient map

Definition 4.7. Let X,Y be topological spaces and q : X → Y be a mapping.
Then
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(i) q is said to be a quotient (resp. an I-quotient) mapping [19, Definition
5.1] if for each q−1(O) is an open set (resp. I-open) in X if and only if
O is an open subset (resp. I-open) in Y .

(ii) q is said to be an (IK,J L)-quotient map if q−1(O) is IK-open in X if
and only if O is J L-open in Y .

Theorem 4.8. Every (IK,J L)-covering mapping is (IK,J L)-quotient.

Proof. Let q be an (IK,J L)-covering map from X onto Y . Suppose that G
is a non-J L-closed subset of Y . So, there exists a sequence {bn} in G such
that J L − lim bn = b /∈ G. Since q is an (IK,J L)-covering map, there exists
a sequence {bn}, where an ∈ q−1(bn) for all ω and a ∈ q−1(b) such that
IK − lim an = a. We observe that {an : n ∈ ω} ⊂ f−1(G) and a /∈ q−1(G).
Therefore, q−1(G) is not IK-closed in X. Thus, q is (IK,J L)-quotient. �

Remark 4.9. It is immediate that every quotient (resp. an IK-quotient) map
is continuous (resp. an IK-continuous).

In the sequel, we refer to (IK, IK)-quotient map as IK-quotient map.

Theorem 4.10. Consider a mapping q : X → Y , where X and Y are two
topological spaces.

(1) X is IK-sequential =⇒ Y is IK-sequential and q is an IK-quotient
map, provided q is a quotient map.

(2) q is a quotient map if q is an IK-quotient map, provided Y is an IK-
sequential space.

Proof. (1) We claim that the space Y is IK-sequential. Consider an IK-open set
O in Y . By our assumption, it suffices to show that q−1(O) is an IK-open subset
of X. Consider a sequence {an} ⊂ X with IK− lim an = a ∈ q−1(O) in X. By
the continuity of q and Theorem 4.2, IK − lim q(an) = a ∈ O. On the other
hand, O is an IK-open subset of Y . By Lemma 2.5, |{n ∈ ω : q(an) ∈ O}| = ω
which further means |{n ∈ ω : an ∈ q−1(O)}| = ω. By Lemma 2.5, we therefore
conclude that q−1(O) is IK-open in X.

Let q−1(O) be an IK-open subset of X, where O ⊂ Y . By our assumption,
q−1(O) is an open subset of X and so, O is open in Y . By above proof, the set
O is IK-open in Y . This proves that q is an IK-quotient map.

(2) Consider that q−1(O) is an open subset of X, where O ⊂ Y . By our
assumption, q−1(O) is an IK-open subset in X, so, O is an IK-open subset of
Y and hence, O is an open set of Y . �

By Theorem 4.3 and Theorem 4.10 we have the following corollary.

Corollary 4.11. Let X be an IK-sequential space and let Y be an arbitrary
topological space. Let q : X → Y be a continuous mapping. Then q is quotient
if and only if q is IK-quotient and Y is an IK-sequential space.

Lemma 4.12. The identity map idX :IJ -sX → X is a continuous IJ -
covering map.
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Proof. The continuity of the identity map idX :IJ -sX → X is immediate
(Since, whenever O is open in X, O is IJ -open in X, that is O is open in
IJ -sX).

Suppose that {an} is a sequence in X such that IJ -lim an = a ∈ X. Con-
sider an arbitrary open set O in IJ -sX with a ∈ O, then O in IJ -open
in X. By Corollary 2.5 and the fact that J is a maximal ideal, we have
{n ∈ ω : an ∈ O} ∈ J ∗ which implies that {n ∈ ω : an /∈ O} ∈ J . Therefore,
{an} is IJ -convergent to a ∈ IJ -sX. Hence, idX is an IJ -covering map. �

Theorem 4.13. Let X be a topological space and let I, J be two ideals on ω,
where J is a maximal ideal. Then X is an IJ -sequential space if and only if
every IJ -quotient mapping onto X is quotient.

Proof. Direct implication is immediate by Theorem 4.10(ii). On the other
hand, for converse part, suppose that every IJ -quotient mapping onto X is
quotient. Then by Theorem 4.8 and Lemma 4.12, the map idX :IJ -sX → X
is a continuous IJ -quotient map. Again, from Remark 2.10(ii), IJ -sX is an
IJ -sequential space. Thus, it is clear from Theorem 4.10(1) that X is an
IJ -sequential space. �

Proposition 4.14. Let I, K be two ideals on ω. Let q : X → Y be an IJ -
quotient map. Then for each IJ -convergent sequence {bn} in Y with bn →IJ b
and bn 6= b for each n ∈ ω, there exists a sequence {ak}k∈ω such that {ak : k ∈
ω} ⊆ q−1({bn : n ∈ ω}) and ak →IJ a /∈ q−1({bn : n ∈ ω}).

Proof. Suppose that q is an IJ -quotient map and {bn} is a sequence in Y with
bn →IJ b and bn 6= b, for each n. Then, the subset Y \ {bn} is not IJ -open
in Y . Then, q−1(Y \ {bn : n ∈ ω}) = X \ q−1({bn : n ∈ ω}) is not IJ -open
in X. So, there exists a sequence {ak}k∈ω in q−1({bn : n ∈ ω}) such that
ak →IJ a /∈ q−1({bn : n ∈ ω}). �

Proposition 4.15. Let q be an IJ -continuous mapping from X to Y . If J is
a maximal ideal, then the following statements are equivalent.

(i) If a sequence bj →IJ b in Y , then there exists a sequence {ai}i∈ω in
X with {ai : i ∈ ω} ⊂ q−1({bj : j ∈ ω}) such that ai →IJ a ∈ q−1(b).

(ii) If P ⊂ Y , then q([q−1(P )]IJ ) = [P ]IJ .
(iii) If b ∈ [P ]IJ ⊂ Y , then q−1(b) ∩ [q−1(P )]IJ 6= φ.
(iv) If b ∈ [P ]IJ ⊂ Y , then there exists an element a ∈ q−1(b) for which if

O is an IJ -sequential neighborhood of a, b ∈ [q(O) ∩ P ]IJ .
(v) If b ∈ [P ]IJ ⊂ Y , then there exists an element a ∈ q−1(b) such that

whenever O is an IJ -sequential neighborhood of a, q(O) ∩ P 6= φ.
(vi) If b ∈ Y , if O is an IJ -sequential neighborhood of q−1(b), then q(O) is

an IJ -neighborhood of b.

Further assuming one of the above condition would imply that q is an IJ -
quotient map.
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Proof. (i) =⇒ (ii) Let us assume that a ∈ [q−1(P )]IJ . Then, ∃ a sequence
an →IJ a, where an ∈ q−1(P ) for each n ∈ ω. It implies that q(an) ∈ P
for each n ∈ ω. Since q is IJ -continuous, q(an) →IJ q(a) or q(a) ∈ [P ]IJ .
Therefore, q([q−1(P )]IJ ) ⊂ [P ]IJ .

For the reverse inequality, let b ∈ [P ]IJ . Then there exists a sequence
bj →IJ b, where bj ∈ P for each j. So, by our assumption, there exists a
sequence ai →IJ a ∈ q−1(b) with {ai : i ∈ ω} ⊂ q−1({bj : j ∈ ω}) ⊂ q−1(P ).
Thus, a ∈ [q−1(P )]IJ , i.e., q(a) ∈ q([q−1(P )]IJ ) and therefore, [P ]IJ ⊂
q([q−1(P )]IJ ).

(ii) =⇒ (iii) Let b ∈ [P ]IJ ⊂ Y , by (ii) we have b ∈ q([q−1(P )]IJ ).
Hence, q−1(b) ∩ [q−1(P )]IJ 6= φ.

(iii) =⇒ (iv) Let b ∈ [P ]IJ for each P ⊂ Y . Then by (iii), there exists an
element a ∈ f−1(b)∩[q−1(P )]IJ . Since, a ∈ [q−1(A)]IJ , there exists a sequence
{an}n∈ω in q−1(P ) such that an →IJ a. If O is an IJ -sequential neighborhood
of a, then {an} has an I-tail which is K-eventually in O. That means there is
a set M = {n1, n2, . . . , nk, . . .} ∈ I∗ for which we must have E ∈ K such that
ank
∈ O for all nk /∈ E. Therefore, q(ank

) ∈ q(O)∩P for all nk /∈ E. Now, take
an element x ∈ q(O) ∩ P . Consider the sequence {bn} such that bn = q(an),
if n ∈ M, n /∈ E and x, otherwise. Then {bn : n ∈ ω} ⊂ q(O) ∩ P and also,
bn →IJ q(a) = b. Hence, b ∈ [q(O) ∩ P ]IJ .

(iv) =⇒ (v) It is obvious.
(v) =⇒ (vi) Suppose that b ∈ Y and O is an IJ -sequential neighborhood

of q−1(b). If q(O) is not an IJ -sequential neighborhood of b, then b ∈ Y \
(q(O))IJ = [Y \ q(O)]IJ . By (v), it is immediate that q(O) ∩ (Y \ q(O)) = φ.
This contradicts our assumption.

(vi) =⇒ (iii) Consider b ∈ [P ]IJ ⊂ Y and q−1(b) ∩ [q−1(P )]IJ = φ. Then
q−1(b) ⊂ X \ [q−1(P )]IJ = (X \ q−1(P ))IJ . This implies that X \ q−1(P ) is
an IJ -sequential neighborhood of q−1(b). By (vi), we have q(X \q−1(P )) is an
IJ -sequential neighborhood of b, i.e., b ∈ (q(X \ q−1(P )))IJ = (Y \ P )IJ =
Y \ [P ]IJ . This is a contradiction.

(iii) =⇒ (i) Let us consider a sequence bn →IJ b in Y . Consider the
range R = {bn : n ∈ ω}, then b ∈ [P ]IJ . By (iii), there exists an element
a ∈ q−1(b)∩ [q−1(R)]IJ . Then, we have there exists a sequence in an ∈ q−1(R)
such that an →IJ a ∈ q−1(b).

Now, assume statement (i) and consider a non-IJ -closed subset O in Y .
Then, there exists {bn} such that bj →IJ b ∈ Y \ O, where bj ∈ O for each
j. It is clear that b 6= bj for each j ∈ ω. By (i), there exists a sequence
ai →IJ a ∈ q−1(b) /∈ q−1(O), where ai ∈ q−1({bj : j ∈ ω}). Thus, q−1(O) is
not an IJ -closed subset in X. �
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5. Conclusion and future scope

Convergence discussed in this paper is a non-axiomatised generalization of
several convergence modes, viz., usual convergence, statistical convergence, I-
convergence and I∗ convergence. We have presented a study on different map-
pings in the context of IK convergence in a topological space. With an assump-
tion of ideality condition on the ideals I and K, this work on IK-convergence
includes more class of ideals as compared to the assumption I ⊂ K. Work
may be carried out further to investigate the operators in IK-closure and IK-
interior of a topological space in case of non-maximal ideals. Further, it will
be interesting to explore similar development for G-convergence [7] as well.
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