• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.026 seconds

Design of Dispersed Clustering Algorithm for Efficient Energy Management in Wireless Sensor Network (무선 센서 네트워크에서 효율적인 에너지 관리를 위한 분산형 클러스터링 알고리즘 설계)

  • Jeon, Min-Ho;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.839-842
    • /
    • 2011
  • Lately Various researches on energy harvesting techniques for wireless sensor networks have been performed to overcome the power limitation of sensor nodes. In wireless sensor networks with harvesting techniques, sensor nodes exploit environmental energy, such as solar or wind energy, as the power sources of the nodes. Existing energy constrained environment routing protocols may not be suitable for energy harvesting based wireless sensor networks because they do not consider the accumulated energy from harvesting devices. In addition, the paths which aren't dispersed shorten the network lifetime. Therefore, in this paper, the algorithm that the path between each node is dispersed is proposed. In case of using the algorithm to be proposed through the simulator it showed that path of the node is variously reflected.

  • PDF

The Comparison of RBS and TDP for the Sensor Networks Synchronization

  • Lee, Hyo-Jung;Kim, Byung-Chul;Kwon, Young-Mi
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.70-74
    • /
    • 2005
  • Sensor networks have emerged as an interesting and important research area in the last few years. These networks require that time be synchronized more precisely than in traditional Internet applications. In this paper, we compared and analyzed the performance of the RBS and TDP mechanisms in the view of the number of generated messages and the synchronization accuracy. The reason that we chose be RBS ad the TDP mechanism to be compared is because the RES is an innovative method to achieve the high accurate synchronization. And TDP is a new method taking over the NTP method which has been used widely in the Internet. We simulated the performance of two methods assuming the IEEE 802.11 CSMA/CA MAC. As for the number of nodes in the sensor networks, two situations of 25 (for the small size network) and 100 (for the large size network) nodes are used. In the aspect of the number of messages generated for the synchronization, TDP is far better than RBS. But, the synchronization accuracy of RBS is far higher than that of TDP. We cm conclude that in a small size sensor networks requiring very high accuracy, such as an application of very high speed objects tracking in a confined space, the RBS is more proper than TDP even though the RBS may generate more traffic than TDP. But, in a wide range sensor networks with a large number of nodes, TDP is more realistic though the accuracy is somewhat worse than RBS because RBS may make so many synchronization messages, and then consume more energies at each node. So, two mechanisms may be used selectively according to the required environments, without saying that the one method is always better than the other.

Wireless Sensor Network for Wildfire Monitoring (산불 감시를 위한 무선 센서네트워크)

  • Sohn, Jung-Man;Seok, Chang-Ho;Park, Whang-Jong;Chang, Yu-Sik;Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.846-851
    • /
    • 2007
  • The wireless sensor network is one of the most practical and cost-effective solutions for monitoring systems covering wild and wide area such as wildfire monitoring. However, the RF distance between sensor nodes is very short due to the need of low power consumption of the sensor node, so the number of sensor nodes to be deployed in the target area is more than tens of thousands. In this paper, we design and analyze the deployment issues as well as re-deployment problem occurred when the battery is exhausted. We also propose the needs and solutions for coverage problem in dynamic deployment. By the experimental evaluations, we analyze the packet success ratio between sensor nodes under various environments such as obstacles and variable distances.

A Scheme to Reduce the Transmission Delay for Real-Time Applications in Sensor Networks (센서 네트워크에서 실시간 응용을 위한 전송 지연 개선 기법)

  • Bin, Bong-Uk;Lee, Jong-Hyup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1493-1499
    • /
    • 2007
  • Real-time applications in a wireless sensor network environment require real-time transmissions from sensing nodes to sink nodes. Existing congestion control mechanisms have treated congestion problems in sensor networks, but they only adjust the reporting frequency or the sending rate in intermediate nodes. They were not suitable for real-time applications from the transmission delays point of view. In this paper, we suggest a new mechanism that can reduce the transmission delay and can increase the throughput for real-time applications in sensor network. This mechanism classifies data on the real-time characteristics, processes the data maintaining the real-time characteristics prior to the other data such as the non real-time data or the data lost the real-time characteristics. A modified frame format is also proposed in order to apply the mechanism to IEEE 802.15.4 MAC layer. The simulation based on ns-2 is accomplished in order to verify the performance of the suggested scheme from transmission delay and throughput standpoints. The simulation results show that the proposed algorithm has a better performance specifically when It applies to the real-time applications in sensor networks.

A NAND Flash File System for Sensor Nodes to support Data-centric Applications (데이터 중심 응용을 지원하기 위한 센서노드용 NAND 플래쉬 파일 시스템)

  • Sohn, Ki-Rack;Han, Kyung-Hun;Choi, Won-Chul;Han, Hyung-Jin;Han, Ji-Yeon;Lee, Ki-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • Recently, energy-efficient NAND Flash memory of large volume is favored as next-generation storage for sensor nodes. So far, most sensor node file systems are based on NOR flash and few file systems are applicable to large NAND flash memory. Although it is required to develop new file systems taking account of the features of NAND flash memory, it is difficult to develop them mainly due to the limit of SRAM memory on sensor nodes. Sensor nodes support SRAM of $4{\sim}10$ KBytes only. In this paper, we designed and implemented a novel file system to support data-centric applications. To do this, we added EEPROM of 1 KBytes to store persistent file description data efficiently and devised a simple wear-leveling method. This reduces the number of page updates, resulting in reduction in energy use and increase in lifetime of sensor nodes.

An Energy-Efficient Clustering Using Division of Cluster in Wireless Sensor Network (무선 센서 네트워크에서 클러스터의 분할을 이용한 에너지 효율적 클러스터링)

  • Kim, Jong-Ki;Kim, Yoeng-Won
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.43-50
    • /
    • 2008
  • Various studies are being conducted to achieve efficient routing and reduce energy consumption in wireless sensor networks where energy replacement is difficult. Among routing mechanisms, the clustering technique has been known to be most efficient. The clustering technique consists of the elements of cluster construction and data transmission. The elements that construct a cluster are repeated in regular intervals in order to equalize energy consumption among sensor nodes in the cluster. The algorithms for selecting a cluster head node and arranging cluster member nodes optimized for the cluster head node are complex and requires high energy consumption. Furthermore, energy consumption for the data transmission elements is proportional to $d^2$ and $d^4$ around the crossover region. This paper proposes a means of reducing energy consumption by increasing the efficiency of the cluster construction elements that are regularly repeated in the cluster technique. The proposed approach maintains the number of sensor nodes in a cluster at a constant level by equally partitioning the region where nodes with density considerations will be allocated in cluster construction, and reduces energy consumption by selecting head nodes near the center of the cluster. It was confirmed through simulation experiments that the proposed approach consumes less energy than the LEACH algorithm.

  • PDF

A Resilient Key Renewal Scheme in Wireless Sensor Networks (센서 네트워크에서 복원력을 지닌 키갱신 방안)

  • Wang, Gi-Cheol;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.103-112
    • /
    • 2010
  • In sensor networks, because sensors are deployed in an unprotected environment, they are prone to be targets of compromise attack, If the number of compromised nodes increases considerably, the key management in the network is paralyzed. In particular, compromise of Cluster Heads (CHs) in clustered sensor networks is much more threatening than that of normalsensors. Recently, rekeying schemes which update the exposed keys using the keys unknown to the compromised nodes are emerging. However, they cause some security and efficiency problems such as single group key employment in a cluster, passive eviction of compromised nodes, and excessive communication and computation overhead. In this paper, we present a proactive rekeying scheme using renewals of duster organization for clustered sensor networks. In the proposed scheme, each sensor establishes individual keys with neighbors at network boot-up time, and these keys are employed for later transmissions between sensors and their CH. By the periodic cluster reorganization, the compromised nodes are expelled from network and the individual keys employed in a cluster are changed continuously. Besides, newly elected CHs securely agree a key with sink by informing their members to sink, without exchangingany keying materials. The simulation results shows that the proposed scheme remarkably improves the confidentiality and integrity of data in spite of the increase of compromised nodes. Also, they show that the proposed scheme exploits the precious energy resource more efficiently than SHELL.

Distributed Key Management Using Regression Model for Hierarchical Mobile Sensor Networks (계층적인 이동 센서 네트워크에서 회귀모델을 이용한 분산 키 관리)

  • Kim Mi-Hui;Chae Ki-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper, we introduce a novel key management scheme that is based on the key pre-distribution but provides the key re-distribution method, in order to manage keys for message encryption and authentication of lower-layer sensor nodes on hierarchical mobile sensor networks. The characteristics of our key management are as follows: First, the role of key management is distributed to aggregator nodes as well as a sink node, to overcome the weakness of centralized management. Second, a sink node generates keys using regression model, thus it stores only the information for calculating the keys using the key information received from nodes, but does not store the relationship between a node and a key, and the keys themselves. As the disadvantage of existing key pre-distributions, they do not support the key re-distribution after the deployment of nodes, and it is hard to extend the key information in the case that sensor nodes in the network enlarge. Thirdly, our mechanism provides the resilience to node capture(${\lambda}$-security), also provided by the existing key pre-distributions, and fourth offers the key freshness through key re-distribution, key distribution to mobile nodes, and scalability to make up for the weak points in the existing key pre-distributions. Fifth, our mechanism does not fix the relationship between a node and a key, thus supports the anonymity and untraceability of mobile nodes. Lastly, we compare ours with existing mechanisms, and verify our performance through the overhead analysis of communication, computation, and memory.

Interconnection Problem among the Dense Areas of Nodes in Sensor Networks (센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.6-13
    • /
    • 2011
  • This paper deals with the interconnection problem in ad-hoc networks or sensor networks, where relay nodes are deployed additionally to form connections between given nodes. This problem can be reduced to a NP-hard problem. The nodes of the networks, by applications or geographic factors, can be deployed densely in some areas while sparsely in others. For such a case one can make an approximation scheme, which gives shorter execution time, for the additional node deployments by ignoring the interconnections inside the dense area of nodes. However, the case is still a NP-hard, so it is proper to establish a polynomial time approximation scheme (PTAS) by implementing a dynamic programming. The analysis can be made possible by an elaboration on making the definition of the objective function. The objective function should be defined to be able to deal with the requirement incurred by the substitution of the dense area with its abstraction.

Dynamic Probabilistic Flooding Algorithm based-on the Number of Child and Sibling Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 자식 노드 수와 형제 노드 수에 따른 동적 확률기반 플러딩 알고리즘)

  • Jeong, Hyo-Cheol;Yoo, Young-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.499-504
    • /
    • 2010
  • The flooding is the simplest and effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a serious case, in turn network resources become severely wasted. Particularly, power is one of the most valuable resources of WSNs as nodes are powered by battery, then the waste of energy by the basic flooding lessens the lifetime of WSNs. In order to solve the broadcast storm problem, this paper proposes a dynamic probabilistic flooding that utilizes the neighbor information like the number of child and sibling nodes. Simulation results show that the proposed method achieves a higher packet delivery ratio with the similar number of duplicate packets as compared to existing schemes.