
6 센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제 김준모

논문 2011-48TC-2-2

센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제

(Interconnection Problem among the Dense Areas of Nodes in Sensor

Networks)

김 준 모
**

(Joonmo Kim)

요 약

본 논문은 ad˗hoc 네트워크 또는 센서 네트워크상에서, 주어진 노드들 사이를 상호연결하기 위해 중간노드들을 추가 배치시

키는 형태의 상호연결 문제에 대한 연구이다. 이 문제는 NP˗hard problem으로 변환된다. 네트워크의 노드들은 응용시스템 또

는 지형적인 요인에 의해 일부지역에서는 밀집하여 분포되고, 그 외의 지역에서는 희박하게 분포될 수 있다. 이러한 경우, 노

드들이 밀집한 지역의 상호연결을 무시함으로써, 보다 짧은 실행시간 안에 추가노드들의 최적배치에 근접하도록 하는 방법을

만들 수 있다. 그러나 이러한 경우라 하더라도 여전히 NP˗hard이므로, 동적프로그래밍을 구현함으로써 다항시간 근사전략

(PTAS)을 구성하는 것이 타당하다. 실행결과 등에 대한 분석은 목적함수를 적절하게 정의함으로써 가능해 진다. 목적함수는

노드 밀집지역을 추상화시킴에 의해 발생하게 되는 문제점에 대처할 수 있도록 정의되어야 한다.

Abstract

This paper deals with the interconnection problem in ad˗hoc networks or sensor networks, where relay nodes are

deployed additionally to form connections between given nodes. This problem can be reduced to a NP˗hard problem. The

nodes of the networks, by applications or geographic factors, can be deployed densely in some areas while sparsely in

others. For such a case one can make an approximation scheme, which gives shorter execution time, for the additional

node deployments by ignoring the interconnections inside the dense area of nodes. However, the case is still a NP˗hard, so

it is proper to establish a polynomial time approximation scheme (PTAS) by implementing a dynamic programming. The

analysis can be made possible by an elaboration on making the definition of the objective function. The objective function

should be defined to be able to deal with the requirement incurred by the substitution of the dense area with its

abstraction.

Keywords : Sensor Networks, Graph Interconnection, NP˗hard Problem, Approximation Algorithm,

Steiner Tree Problem

Ⅰ. Introduction

This paper deals with an interconnection problem

between nodes in ad˗hoc networks or sensor

networks. The nodes of networks, by application or

geographic factors, can be deployed densely in some

*
정회원, 단국대학교 컴퓨터학부

(Member, Computer Science & Engineering,

Dankook University)

접수일자: 2010년12월23일, 수정완료일: 2011년1월27일

areas while sparsely in others. Over the sparsely

deployed network areas, to make the nodes get

interconnected with the shortest distance, it is

necessary to know the special locations called steiner

points
[1]

: locally interconnecting through which the

global interconnection over the network will have the

shortest total length. On the other hand, over the

densely deployed areas, there is no need to be

concerned about the interconnections since it is

assumed that the nodes in there are given to be

(113)

2011년 2월 전자공학회 논문지 제 48 권 TC 편 제 2 호 7

interconnected. Therefore, by abstracting and

simplifying the dense areas, one may construct the

approximation scheme effectively that performs the

overall interconnections efficiently. As a first thought,

one may expect constructing an interconnection

scheme by abstracting the dense areas to two

dimensional shapes such as circles or rectangles.

However, at this point, one has a problem that it is

hard to define or make use of the objective function,

which is necessary in analyzing the approximation

ratio for the execution results. In analyzing and

evaluating the interconnection between nodes, one

needs to define and apply the objective function that

represents the accumulation of inter node distances

over the interconnections. Meanwhile, if the area of

two dimensional shape is intermixed in the

representation or evaluation of interconnections, it

becomes hard to define the objective function, or the

evaluation for the execution results becomes

complicated or meaningless. So, one needs to devise a

gadget that helps to define the objective function. By

substituting the dense areas with gadgets, explained

in what follows, one is able to omit two dimensional

area from the problem instance. After the

substitution, one may be able to abstract and define

the problem as follows in this section, and construct

its approximation scheme in the next sections.

A gadget is a two dimensional shape that covers

the dense area most appropriately, or it may

represent a node of a point. For the purpose of the

proof, one should confine a gadget to be a point, a

line, a triangle or a rectangle. On the other hand, one

may know, from what follows in the next sections,

that it can be expanded to be an arbitrary convex

polygon. Note that the dense area, which is close to

the concave polygon form, can be partitioned into

multiple smaller convex polygons. Inside of a gadget

is where there is no steiner point, and abstracts the

dense area of a network. It can be easily seen that

the errors, coming from the abstraction of the dense

areas into gadgets, should be reduced into an

acceptable level by modifying the gadget into a

convex polygon with more number of sides. The

other remaining errors can reasonably be ignored.

Now one may define the interconnection problem for

the graph represented by the gadgets as: the problem

is to construct the set of interconnection lines that

has the minimum total length to interconnect 

gadgets, ⋯ . One may see analogous

problems in [2～3]. The case that  is just one node,

which is a point in the abstraction, for all

  ⋯ is just the Steiner Minimum Tree

problem
[4]

, which is NP˗hard. Thus the proposed

problem is also NP˗hard
[5～6]

. For this problem, this

paper provides the scheme for constructing its

algorithm and its analysis in terms of the execution

time and the optimality of the result.

The notations and definitions in the following

sections are borrowed from [2～3, 7～8]. Next section

is for the definitions in constructing the

approximation scheme. Section Ⅲ shows that moving

the given problem instance from the real coordinate

into the integer one is a necessary and also can be

an acceptable modification for the approximation

scheme. Section Ⅳ gives component ideas and the

main theorem. Section Ⅴ is for the skeleton of the

associated dynamic programming and its run time

analysis. Section Ⅵ is for the proof of the main

theorem, and Section Ⅶ is the conclusion.

Ⅱ. Total Length and Other Definitions

Our objective is to find the interconnection that

has the almost minimum sum of the interconnecting

edge lengths for the problem instance. For this, first

of all, one needs to have definitions and a proposition

as follows:  is a side (line segment) of the

perimeter of a gadget,  is the length of  ,  is an

optimally interconnecting edges between two gadgets,

 is the length of  ,  is an interconnecting edge

between two gadgets formed by the approximation,

  is the length of  ,  is a graph formed by  's

and 's,  is for  
  for  

 , ℒ is a graph of

(114)

8 센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제 김준모

all 's, ℒ is for  
 . Likewise,  is a graph

formed by  's and  's;  , ℒ and ℒ are

defined analogously. As well,   is a constant,

and    and    are two arbitrarily small

constants.

It may happen that ℒ comes to be almost zero,

and then it becomes meaningless to define the

approximation ratio in terms of ℒ . To avoid this

situation, one needs to approximate in terms of  .

Then the following proposition is in needed.

Proposition 1 Under the reasonable assumption that

for  
 ≤  for  

 ,   ˗approximation for 

implies   ˗approximation for the ℒ .

Proof:

  ℒ  for  


≤   

   ℒ for  
 

ℒ ≤   ℒ  for  


≤    ℒ

   ℒ ■

Ⅲ. Shifting into the Integer Coordinates

In order to run the program, the instance of our

problem should be shifted into the integer

coordinates. The shift will move each end point into

the nearest integer position. As well, the steiner

그림 1. 에서  †로의 이동

Fig. 1. Shift from  to  † .

points, which aids the minimum connection between

given nodes, should also lie at the integer positions.

With more definitions that  † is  on integer

coordinate, and 
† is  on integer coordinate, one

may show that the shifts are acceptable.

Proposition 2  ˗approximation over  †

implies ˗approximation over  .

Proof: By the shift and the assumption, one may

have the following inequality:   † ≤  .

The term   is the number of edges of the

graph. Note that the maximum number of points for

the problem instance is   that is the sum of

the maximum number, , of points of gadgets and

the number,   , of steiner points. Considering the

tree with   nodes, there are   edges.

But,  may have  more edges than the tree due to

the shape of gadgets such as triangles or rectangles.

The term 2 is for the maximum length increase by

그림 2.   ˗타일링

Fig. 2.   ˗tiling.

그림 3. m˗light 그래프

Fig. 3. M˗light graph.

(115)

2011년 2월 전자공학회 논문지 제 48 권 TC 편 제 2 호 9

the shift of an edge: each of both ends of an edge

can increase its length unit distance at the most.

Likewise,   
†  ≤  , where  is an upper

bound for the number of edges, supposing the

approximated˗graph is a complete network. This

condition, 
† ≤  ·† , will be shown to be

satisfied by the PTAS and then,

   ≤    

 ≤       

  
   



  


   



≤ 

where  can be chosen appropriately. ■
The term  has the key role in this proof, and it

can be acquired by setting the unit length of the

integer coordinate short enough:  gets bigger as the

unit of length gets shorter.

Ⅳ. Partitioning, Portals and the Structure

Theorem

The first stage of the scheme is to partition the

given problem instance so as to form a dynamic

programming. A rectangle, denoted as  , in

partitioning the problem instance is an axis˗aligned

rectangle. The size of the rectangle is the length of

its longer edge. The bounding box of the problem

instance is the smallest rectangle enclosing them. A

line˗separator, denoted as  , of a rectangle is a

straight line segment, which is parallel to the

rectangle's shorter edge, and which partitions the

rectangle into two sub˗rectangles. Each of the sub˗
rectangles should occupy at least  the area.

For example, if the rectangle's width  is greater

than its height, then  is any vertical line in the

middle  of the rectangle. Now a recursive

partition, on which the dynamic programming may

run, of a rectangle is defined as follows.

Definition 1 (   ˗tiling) A    ˗tiling of a

rectangle  is a binary tree (hierarchy) of sub˗
rectangles of  .  is at the root. If the size of any

sub˗rectangle is ≤  , then it's the terminal of the

tree. Otherwise, the root contains  for  , and has

two sub˗trees that are   ˗tiling of the two

rectangles, into which  divides  recursively.

Note that the rectangles at depth  in the tiling

form a partition of the root rectangle. The set of all

rectangles at depth   is a refinement of this

partition obtained by putting  through each depth

 rectangle of size   . The area of any depth 

rectangle is at most 
 



times the total area. The

following proposition is therefore immediate.

Proposition 3 If a rectangle has width  and

height  , then its    ˗tiling has depth at most

log log  .

Definition 2 (portals) A portal in a   ˗tiling is

any point that lies on the edges of rectangles in the

tiling. If  is any positive integer then a set of

portals  is called m˗regular for the tiling if there

are exactly  equidistant portals on  of each

rectangle of the tiling. The two crossing points of

 and  are also portals. In other words,  can

be divided into   equal parts by the portals on

it.

Definition 3 (m˗light) Let  be a   ˗tiling of the

bounding box,  be an m˗regular set of portals on  ,

and ∈  . Then the associated 
† is m˗light with

respect to  if the followings are true: (ⅰ) in each

rectangle of tiling  , all  's crosse  of that

rectangle at most  times (ⅱ) each  crosses 

only at portals in  .

Theorem (Structure Theorem) The following is

true for each    . Every set of gadgets in the

problem has a  ˗approximate 
† and an

associated   ˗tiling  of the bounding box such

that the 
† is m˗light for  , where  

log 
.

(116)

10 센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제 김준모

Ⅴ. The Polynomial Time Dynamic

Programming (DP)

By Proposition 2 and the proof of the Structure

Theorem in the next section,

ʍ˗ can be defined

as a 
† that has m˗light property and the

approximation ratio  . One can build ʍ˗
up to the root of the tiling with the DP. The

Structure Theorem guarantees the existence of

ʍ˗ and its tiling  , where the number of the

portals is  

log 
. By Proposition 3, the

depth of  is at most log . Now, the

description for the DP that finds both  and  's for

a ʍ˗ comes next in this section. The execution

time will be shown to be a polynomial time of

·      .

The work of the DP is bottom˗up approach, but it

is easy to see the procedure from the final stage to

the start. The final result of the DP is the rectangle,

which is the bounding box for the given problem

instance, and which contains the ʍ˗ that can be

the almost optimal solution for the problem.

Right before the final rectangle is reached, many

combinatorial cases must be checked. All 's that

could divide the final rectangle into two sub˗
rectangles according to the    ˗tiling are considered

one by one as in Fig. 4. Along such a  , there are

combinations of choices of portals that can be

represented by multi˗sets. Then, for each choice of

그림 4. line˗separator를 사용한 분할

Fig. 4. Partitioning with a line˗separator.

그림 5. 포함/제외에 의한 조합

Fig. 5. Combinations from inclusion/exclusion.

 and its associated multi˗set of portals, there is

one more level of choices for  's. The choices of  's

are determined by their inclusions/exclusions within

each of the sub˗rectangles as in Fig. 5. For each of

the many combinatorial cases, it has its own

minimum cost ʍ˗ . Such a minimum cost

ʍ˗ comes from the concatenation of the two

smaller ʍ˗ from each of the sub˗rectangles.

So a rectangle holds as many minimum cost

ʍ˗'s as the number of the combinations.

The same observations hold repeatedly in each of

the sub˗rectangle for finding its own minimum cost

ʍ˗ until the work reaches the bottom most

rectangles, where there are limited number of  's,

and so the brute˗force algorithm can find the

minimum cost ʍ˗ for each of the combinatorial

cases inside the smallest rectangle. Out of all the

minimum cost ʍ˗'s from the cases of

combinations in the root rectangle, the minimum one

from them all will be chosen to be the approximated

solution for the problem, the final solution.

Now it is to be shown that the number of entries

of the lookup table for this DP is a polynomial, and

the run time for each of the entries is in a poly time.

An entry can be indexed by the triple: (a) a

rectangle, (b) a multi˗set of  ≤  portals along

the perimeter of the rectangle, and (c) a set of the 

's inside the rectangle.

For (a), the number of distinct rectangles is at

(117)

2011년 2월 전자공학회 논문지 제 48 권 TC 편 제 2 호 11

most  
  since the maximum number of

points are   from the Proof of Proposition 2.

For (b), each rectangle has 4 sides, which are parts

of the 's of its ancestors. The  portals on 

are evenly spaced, so they are determined once a 

is chosen. But the number of choices for a  is at

most the number of pairs of points, which is .

This accounts for the factor:      .

Once the set of  portals on the four sides is

identified, the number of ways of choosing a multi˗set

of size  out of them is at most    . For (c), if

 ≤   's exist in a rectangle, there may exist

 possible sets at the most. However, if more than

  's pass the  of the rectangle, the number of

possible sets of the  's inside the rectangle will be

artificially set to 1 by using the bridge described in

the next section. Hence the upper bound of the size

of the lookup table is:


  



 × ×  × , which is

      .

The running time over the lookup table is now to

be considered. The bottom level rectangles has

limited number of  's of  and so run the brute

˗force algorithm for each in    time. For each of

the upper level rectangles, the minimum value is

computed by the comparition operations over the sub˗
rectangles, so the time can be bounded by a

polynomial. Therefore, the running time of the DP is

upper bounded by    ××   ,

which is   . Note that the DP is organized so

that all the m˗light graphs can be reached. Then, if

the existence of ʍ˗ in any chosen rectangle is

ensured, the m˗light graph with the minimum length

will turn out to be a ʍ˗ . The proof of the

Structure Theorem in the next section shows the

existence of ʍ˗ in a rectangle.

Ⅵ. Proof of the Structure Theorem

The Structure Theorem shows the existence of the

ʍ˗ whose difference from  † , which is the

mathematical optimality, is arbitrarily small. Once the

existence of ʍ˗ is shown, the minimum cost m˗
light graph, which will be found by the DP, is

naturally a ʍ˗ . The proof of the Structure

Theorem can be stated as follows. For each rectangle

over the   ˗tiling of the problem instance, one may

choose a  that (virtually) crosses with the edges

of  † less times than the other 's. Let the

points, at which the edges of  † cross with the

chosen  , be target˗points. Then the ʍ˗
whose edges and points cross at the nearest portals

to the target˗points will be shown to be within the

expected approximation bound.

The analytic sum of the lengths between the target

˗points and their nearest portals, through which the

edges of ʍ˗ is passing, may represent the

estimation of the length difference between the

optimal structure  † and the m˗light structure

ʍ˗ . The  † inside the rectangle can be

represented by the minimum possible length

estimation, which can be expressed by Lemma 1 that

is illustrated in Fig. 6. Let a unit˗band in a rectangle

be the sub˗rectangle with the unit length of width

and the height of length  .

Lemma 1 When a  inside the unit˗band crosses

∈ ∪ times with  's or  's, the minimum

그림 6. line˗separators를 포함한 6개의 단위 밴드

Fig. 6. Six unit bands with line˗separators.

(118)

12 센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제 김준모

possible  †  in the unit˗band is 


.

Proof: The accumulated length of the line

segments,  's or  's, inside the unit˗band gets to be

the shortest when all the line segments touch

perpendicular to  . By the  crossings, the

minimum cost in the unit˗band is 


. ■

For each rectangle over the   ˗titling, in its

middle 


area, one  can be chosen such that the

 crosses  times with  † while other 's in

the same area cross at least  times. As a result, the

minimum  † in the middle  area could be

estimated as 
 ·


 . Along the chosen  , a

ʍ˗ can be built up. The minimum length m˗
light graphs that has less or equal length than that

of ʍ˗ will be found by the DP.

Proof: (Structure Theorem) One needs to figure out

how much more length ʍ˗ has than  † . By the

number  of crossings between  † and a  ,

there are two cases to be considered as in Fig. 7.

Case I For a rectangle, there is a  , which is

crossed  ≤  times by  † , where  is the

minimum number of the crossings that a  in the

rectangle may have.

Case II For a rectangle, all the 's cross with

 † more than  times.

In Case I, the maximum length difference between

그림 7. 교차

Fig. 7. Crossings.

 † and ʍ˗ in a rectangle can be 


 when

all the crossing points of ʍ˗ at the portals are

steiner points of degree 3, and each of the associated

edges increase the length up to 


to reach the

nearest target˗points. This is due to the properties of

steiner tree interconnections
[1, 4]

. Thus, the ratio of the

length difference to  † in the rectangle turns out to

be:










 


. Now one may let  

log 


so that the ratio of the length of ʍ˗ to  † is

≤ 


  .

In Case II, the estimated minimum  †  in the

 area of a rectangle is 

 ·

 since    .

Let  be a bridge inside a sub-rectangle. A

bridge is a line segment that lies in parallel with and

tightly close to (, but not touching to) the  in the

rectangle. Note that a rectangle should contain two

's because each of the two sub˗rectangles may

have one  respectively. The  's,  's and steiner

points of a ʍ˗ in one sub˗rectangle will shown

to be connected to those in the other sub˗rectangle

with the intentional use of 's for the analysis

purpose. In fact, a  is one of  's. Because the

density of the  's in this case is determined to be

high, two 's of length  are added to form a

ʍ˗ , instead of considering the details, which

would involve exponential time complexity, of the

crossings. Actually, all  's and  's are assumed to

be touched with a , instead of passing through

portals. Later the two 's are connected with each

other through the portal by an infinitesimally short

line segment whose lengths can be ignored. So, the

ratio of the length difference to the  † in the

rectangle is:

 ·





 


. As a result, the length

(119)

2011년 2월 전자공학회 논문지 제 48 권 TC 편 제 2 호 13

difference from the two cases is at most 


. Since

the tiling has depth of log , the approximation

ratio is




 log  

 



 


 log  

   ≤   ■

Ⅶ. Conclusion

The purpose of the scheme is to find the location,

called steiner point, so as to form the interconnection

that has the shortest total length. One may design a

polynomial time algorithm from the scheme. As the

algorithm can handle more portals, execution time

will increase within a polynomial bound, giving the

output with a shorter total length. After having the

result of the interconnection algorithm; if there are

any two given nodes, which should be connected

directly, and which are located far each other beyond

the transmission radius of the sensor node, one needs

to have another consideration about putting multiple

relay nodes between them. This may lead to

additional scheme and algorithm with its own

analysis, and thus make an independent research

later. In implementing the algorithms, the schemes

may give the guide for the possible pair of the

expected precision of the results and the run time for

it, as well as the procedures of the algorithms.

References

[1] E.N. Gilbert and H.O. Pollak, “Steiner minimal

trees,” SIAM Journal on Applied Mathematics,

Vol. 16, pp.1-29, 1968.

[2] X. Cheng, J.-M. Kim and B. Lu, “A Polynomial

Time Approximation Scheme for the Problem of

Interconnecting Highways,” Journal of

Combinatorial Optimization, Vol 5, issue 3, pp.

327-343, 2001.

[3] DING-ZHU DU, FRANK K. HWANG and

GUOLIANG XUE. “Interconnecting Highways,”

SIAM Discrete Mathematics, Vol. 12, pp.

252-261, 1999.

[4] Z.A. Melzak, “On the problem of Steiner,”

Canadian Mathematics Bulletin, Vol. 4, pp.

143-148, 1961.

[5] Ding-Zhu Du, Ker-I Ko, Theory of

Computational Complexity, Wiley Inter-Science

2000.

[6] Michael R. Garey, David S. Johnson, Computers

and Intractability A Guide to the Theory of

NP-Completeness, Freeman, 1978.

[7] S. Arora, “Polynomial-time approximation

schemes for Euclidean TSP and other geometric

problems,” Proc. 37th IEEE Symp. on

Foundations of Computer Science, pp. 2-12, 1996.

[8] S. Arora, “Nearly linear time approximation

schemes for Euclidean TSP and other geometric

problems,” Proc. 38th IEEE Symp. on

Foundations of Computer Science, pp. 554-563,

1997.

저 자 소 개

김 준 모(정회원)

1989년 서울대학교 컴퓨터공학과

학사

2001년 University of Minnesota

전산학 박사

2002년～2004년 한국정보보호

진흥원 연구원

2004년～현재 단국대학교 컴퓨터학부 부교수

<주관심분야 : Approximations for NP-hard

problems>

(120)

