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( Interconnection Problem among the Dense Areas of Nodes in Sensor
Networks )
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Abstract

This paper deals with the interconnection problem in ad-hoc networks or sensor networks, where relay nodes are
deployed additionally to form connections between given nodes. This problem can be reduced to a NP-hard problem. The
nodes of the networks, by applications or geographic factors, can be deployed densely in some areas while sparsely in
others. For such a case one can make an approximation scheme, which gives shorter execution time, for the additional
node deployments by ignoring the interconnections inside the dense area of nodes. However, the case is still a NP-hard, so
it is proper to establish a polynomial time approximation scheme (PTAS) by implementing a dynamic programming. The
analysis can be made possible by an elaboration on making the definition of the objective function. The objective function
should be defined to be able to deal with the requirement incurred by the substitution of the dense area with its
abstraction.

Keywords : Sensor Networks, Graph Interconnection, NP-hard Problem, Approximation Algorithm,

Steiner Tree Problem

1. Introduction areas while sparsely in others. Over the sparsely

deployed network areas, to make the nodes get

This paper deals with an interconnection problem interconnected with the shortest distance, it
between nodes in adhoc networks or sensor necessary to know the special locations called steiner
networks. The nodes of networks, by application or pointsmi locally interconnecting through which the

geographic factors, can be deployed densely in some

C A, d2stn AR densely deployed areas, there is no need to be
(Member, Computer Science & Engineering, concerned about the interconnections since it
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global interconnection over the network will have the
shortest total length. On the other hand, over the

assumed that the nodes in there are given to be
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by and

simplifying the dense areas, one may construct the

interconnected.  Therefore, abstracting
approximation scheme effectively that performs the
overall interconnections efficiently. As a first thought,
one may expect constructing an interconnection
scheme by abstracting the dense areas to two
dimensional shapes such as circles or rectangles.
However, at this point, one has a problem that it is
hard to define or make use of the objective function,
which is necessary in analyzing the approximation
ratio for the execution results. In analyzing and
evaluating the interconnection between nodes, one
needs to define and apply the objective function that
represents the accumulation of inter node distances
over the interconnections. Meanwhile, if the area of
the

representation or evaluation of interconnections, it

two dimensional shape is intermixed in

becomes hard to define the objective function, or the
the

complicated or meaningless. So, one needs to devise a

evaluation for execution results becomes
gadget that helps to define the objective function. By
substituting the dense areas with gadgets, explained
in what follows, one is able to omit two dimensional
the After the

substitution, one may be able to abstract and define

area from problem instance.
the problem as follows in this section, and construct
its approximation scheme in the next sections.

A gadget is a two dimensional shape that covers
the

represent a node of a point. For the purpose of the

dense area most appropriately, or it may
proof, one should confine a gadget to be a point, a
line, a triangle or a rectangle. On the other hand, one
may know, from what follows in the next sections,
that it can be expanded to be an arbitrary convex
polygon. Note that the dense area, which is close to
the concave polygon form, can be partitioned into
multiple smaller convex polygons. Inside of a gadget
is where there is no steiner point, and abstracts the
dense area of a network. It can be easily seen that
the errors, coming from the abstraction of the dense
should be reduced

acceptable level by modifying the gadget into a

areas into gadgets, mto an
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convex polygon with more number of sides. The
other remaining errors can reasonably be ignored.
Now one may define the interconnection problem for
the graph represented by the gadgets as: the problem
is to construct the set of interconnection lines that
has the minimum total length to interconnect n
gadgets,

One may see analogous

91:92>" " Gn-
problems in [2~3]. The case that g; is just one node,
which all
1=1,2,---,n 1s just the Steiner Minimum Tree
problemm, which 1s NP-hard. Thus the proposed
problem is also NP-hard® ™. For this problem, this

paper provides the scheme for constructing

is a point in the abstraction, for

its
algorithm and its analysis in terms of the execution
time and the optimality of the result.

The notations and definitions in the following
sections are borrowed from [2~3, 7~8]. Next section
the the

approximation scheme. Section I shows that moving

is  for definitions in  constructing
the given problem instance from the real coordinate
into the integer one is a necessary and also can be
an acceptable modification for the approximation
scheme. Section IV gives component ideas and the
main theorem. Section V is for the skeleton of the
associated dynamic programming and its run time
analysis. Section VI is for the proof of the main

theorem, and Section VI is the conclusion.
II. Total Length and Other Definitions

Our objective is to find the interconnection that
has the almost minimum sum of the interconnecting
edge lengths for the problem instance. For this, first
of all, one needs to have definitions and a proposition
as follows: s is a side (line segment) of the
perimeter of a gadget, |s| is the length of s, ¢ is an
optimally interconnecting edges between two gadgets,
|¢] is the length of ¢, ¢ is an interconnecting edge
between two gadgets formed by the approximation,

IZ | is the length of / , T 1s a graph formed by s's
and ¢'s, [T1 is Y Isl+ >, |el, £ is a graph of

foralls foralll
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all ¢'s, |£l| is >, |0l Likewise, T, is a graph
forallt

formed by s's and ¢'s; IT,|, £, and |£,| are
defined analogously. As well, ¢(>0) is a constant,
and ¢, (>0) and €,(>0) are two arbitrarily small
constants.

It may happen that |.£| comes to be almost zero,
and then it becomes meaningless to define the
approximation ratio in terms of |£]. To avoid this
situation, one needs to approximate in terms of |7].
Then the following proposition is in needed.

Proposition 1 Under the reasonable assumption that

1 Isl < ¢ Y] 1), (1+e,)-approximation for T

foralls for allt
implies (1 + ¢,)-approximation for the £ .

Proof:

T =1L, l+ D] sl

foralls

< (1+61)|T1
=1+e)lLl+ Y] Isl),

foralls

£)<Q+elltl+e Y sl

foralls

< (14+e0+e)lLl
(1+e)lLl [ ]

II. Shifting into the Integer Coordinates

In order to run the program, the instance of our
problem should be shifted into the integer
coordinates. The shift will move each end point into

the nearest integer position. As well, the steiner

a part of given graph shifted into
integer coordinate
P oo /
0— — —4 "f 7
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points, which aids the minimum connection between
given nodes, should also lie at the integer positions.
With more definitions that 77 is T on integer
coordinate, and TJ is T, on integer coordinate, one
may show that the shifts are acceptable.

Proposition 2 (1 + ¢)-approximation over 1"
implies (1 + €)-approximation over T.

Proof: By the shift and the assumption, one may
have the following inequality: |71 — |T'| < 2(6n—3).

The term (6n—3) is the number of edges of the
graph. Note that the maximum number of points for
the problem instance is (5n—2) that is the sum of
the maximum number, 4n, of points of gadgets and
the number, n— 2, of steiner points. Considering the
tree with (57— 2) nodes, there are (5n—3) edges.
But, T" may have n more edges than the tree due to
the shape of gadgets such as triangles or rectangles.

The term 2 is for the maximum length increase by
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the shift of an edge: each of both ends of an edge

can increase its length unit distance at the most.
Likewise, |T,|—|T!| < 2n®, where n® is an upper
bound for the number of edges, supposing the

approximated-graph is a complete network. This
condition, |T%| < (1+¢€)-IT], will be shown to be

satisfied by the PTAS and then,

IT|—2n* < (14 €)(T1+2(6n—3))

IT,| < (1+e)lTl+2(1+€)(6n—3)+ 2n*
(1+¢€)(6n—3)+ 2n

=(1+e+ 2 T )T

—(tet 2(1+6)(6n3—3)+2n2 71
n

< (1+ )Tl

|
The term n® has the key role in this proof, and it

where ¢ can be chosen appropriately.

can be acquired by setting the unit length of the
integer coordinate short enough: T' gets bigger as the

unit of length gets shorter.

IV. Partitioning, Portals and the Structure
Theorem

The first stage of the scheme is to partition the
given problem instance so as to form a dynamic

rectangle, R,
partitioning the problem instance is an axis-aligned

programming. A denoted as in
rectangle. The size of the rectangle is the length of
its longer edge. The bounding box of the problem
instance is the smallest rectangle enclosing them. A
line-separator, denoted as [°°”, of a rectangle is a
which

rectangle’s shorter edge, and which partitions the

straight line segment, is parallel to the

rectangle into two sub-rectangles. Each of the sub-

rectangles should occupy at least (1/3),, the area.
For example, if the rectangle’s width W is greater
than its height, then I°°” is any vertical line in the
middle W/3,, of the rectangle. Now a recursive
partition, on which the dynamic programming may

run, of a rectangle is defined as follows.

(116)
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(2:3iling) A 2:3+iling of a
rectangle R is a binary tree (hierarchy) of sub-

Definition 1

rectangles of R. R is at the root. If the size of any
subrectangle is < 1, then it’s the terminal of the
tree. Otherwise, the root contains I°*? for R, and has
two sub-trees that are 2:3-tiling of the two
rectangles, into which {°*°? divides R recursively.
Note that the rectangles at depth d in the tiling
form a partition of the root rectangle. The set of all
rectangles at depth d+1 is a refinement of this
partition obtained by putting °“” through each depth
d rectangle of size > 1 . The area of any depth d

. 2\
rectangle is at most (5) times the total area. The

following proposition is therefore immediate.

Proposition 3 If a rectangle has width W and
height H, then its 2:3-tiling has depth at most
log, s W+log, s H+ 2.

Definition 2 (portals) A portal in a 2:3-tiling is
any point that lies on the edges of rectangles in the
tiling. If m is any positive integer then a set of
portals P is called mregular for the tiling if there
are exactly m equidistant portals on I°’ of each
rectangle of the tiling. The two crossing points of
I’? and R are also portals. In other words, I°’ can
be divided into m —1 equal parts by the portals on
it.

Definition 3 (mrlight) Let S be a 2: 3-tiling of the
bounding box, P be an m-regular set of portals on S,
and mE Z"*. Then the associated T, is mlight with
respect to S if the followings are true: (i) in each
rectangle of tiling S, all £'s crosse I*’ of that
rectangle at most m times (ii) each ¢ crosses I°°”
only at portals in P.

Theorem (Structure Theorem) The following is
true for each € > 0. Every set of gadgets in the

problem has a (14 e€)-approximate 7' and an

a

associated 2 :3-tiling S of the bounding box such

logn
€ )

that the T

a

is mlight for S, where m = O(
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V. The Polynomial Time Dynamic
Programming (DP)

By Proposition 2 and the proof of the Structure
Theorem in the next section, m-light can be defined

as a T,,T that has mrlight property and the
approximation ratio (1+e¢). One can build m-light
up to the root of the tiling with the DP. The
Structure Theorem guarantees the existence of
m-light and its tiling .5, where the number of the

logn)'

portals is m = O( By Proposition 3, the

depth of S O(logn). the
description for the DP that finds both .5 and ¢'s for

a m-light comes next in this section. The execution

is at most Now,

time will be shown to be a polynomial time of

poly(n)-20tm) = n00/),

The work of the DP is bottom-up approach, but it
is easy to see the procedure from the final stage to
the start. The final result of the DP is the rectangle,
which is the bounding box for the given problem
instance, and which contains the m-light that can be
the almost optimal solution for the problem.

Right before the final rectangle is reached, many
combinatorial cases must be checked. All I*“?’s that
could divide the final rectangle

rectangles according to the 2 : 3-tiling are considered

into two sub-

one by one as in Fig. 4. Along such a [*°?, there are
combinations of choices of portals that can be

represented by multi-sets. Then, for each choice of

-

AN

sub-rectangles are computed

chosen line separator ;
earlier

> dense area
o portal
- chosen portal

 included avea
< excluded area
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Fig. 4. Partitioning with a line-separator.
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5. Combinations from inclusion/exclusion.

I’ and its associated multi-set of portals, there is
one more level of choices for s’s. The choices of s's
are determined by their inclusions/exclusions within
each of the subrectangles as in Fig. 5. For each of
it has

Such a minimum cost

the many combinatorial cases, its own
minimum cost Mm-light.
m-light comes from the concatenation of the two
smaller m-light from each of the sub-rectangles.

So a rectangle holds as many minimum cost
m-light's as the number of the combinations.

The same observations hold repeatedly in each of
the subrectangle for finding its own minimum cost
m-light until the work reaches the bottom most
rectangles, where there are limited number of s's,
and so the bruteforce algorithm can find the
minimum cost m-light for each of the combinatorial
cases inside the smallest rectangle. Out of all the
the of

combinations in the root rectangle, the minimum one

minimum cost m-light's from cases
from them all will be chosen to be the approximated
solution for the problem, the final solution.

Now it is to be shown that the number of entries
of the lookup table for this DP is a polynomial, and
the run time for each of the entries is in a poly time.
An entry can be indexed by the triple: (a) a
rectangle, (b) a multi-set of i (< 4m) portals along
the perimeter of the rectangle, and (c) a set of the s
's inside the rectangle.

For (a), the number of distinct rectangles is at
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2(3n—13)
4

points are 2(3n—3) from the Proof of Proposition 2.

most ( ) since the maximum number of
For (b), each rectangle has 4 sides, which are parts
of the I*?’s of its ancestors. The m portals on [*?’
are evenly spaced, so they are determined once a [*¢?

is chosen. But the number of choices for a I°? is at
most the number of pairs of points, which is (;)

O((n*)*) = 0(n®).
Once the set of 4m portals on the four sides is

This accounts for the factor:

identified, the number of ways of choosing a multi-set

of size i out of them is at most 2*" % . For (c), if

j (< 4m) s's exist in a rectangle, there may exist

2™ possible sets at the most. However, if more than

m s’'s pass the I*? of the rectangle, the number of
possible sets of the s's inside the rectangle will be
artificially set to 1 by using the bridge described in
the next section. Hence the upper bound of the size
of the lookup table is:

4m

Zn4 ><’I’L8 % 24m+i ><24m
i=1

O(n12212m ) —

which is

’

710(1/6).

The running time over the lookup table is now to
be considered. The bottom level rectangles has

limited number of s's of O(m) and so run the brute

-force algorithm for each in 200m) time. For each of
the upper level rectangles, the minimum value is
computed by the comparition operations over the sub-
bounded by a

rectangles, so the time can be

polynomial. Therefore, the running time of the DP is

(m) 5 poly (n) X table size,

upper bounded by 2¢
which is n2"¢). Note that the DP is organized so
that all the m-light graphs can be reached. Then, if
the existence of m-light in any chosen rectangle is
ensured, the m-light graph with the minimum length
will turn out to be a m-light. The proof of the
Structure Theorem in the next section shows the

existence of m-light in a rectangle.

==X H 48 & TC
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VL. Proof of the Structure Theorem

The Structure Theorem shows the existence of the
m-light whose difference from T", which is the
mathematical optimality, is arbitrarily small. Once the
existence of m-light is shown, the minimum cost m-
light graph, which will be found by the DP, is
naturally a m-light. The proof of the Structure
Theorem can be stated as follows. For each rectangle
over the 2: 3-tiling of the problem instance, one may
choose a I*°? that (virtually) crosses with the edges
of T less times than the other I’P's. Let the
points, at which the edges of T' cross with the

I’?, be target-points. Then the m-light
whose edges and points cross at the nearest portals

chosen

to the target-points will be shown to be within the
expected approximation bound.

The analytic sum of the lengths between the target
-points and their nearest portals, through which the
edges of m-light is passing, may represent the
estimation of the length difference between the
optimal structure 7" and the mlight structure
m-light. The |77 inside the rectangle can be
the

estimation, which can be expressed by Lemma 1 that

represented by minimum  possible length
1s illustrated in Fig. 6. Let a unit-band in a rectangle
be the subrectangle with the unit length of width
and the height of length L.

Lemma 1 When a [°°? inside the unit-band crosses

k(e NU{0}) times with £'s or s’s, the minimum

=

@

— line separator --. interconnect line dense area

I 6.
Fig.

line-separatorsE E &5 6702 Tl HWiE
6. Six unit bands with line-separators.
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possible |7'| in the unit-band is >

Proof: The accumulated length of the Iline

segments, {'sor s 's, inside the unit-band gets to be

the shortest when all the line segments touch

the

1er

perpendicular to By the k& crossings,

minimum cost in the unit-band is 5
For each rectangle over the 2 :3-titling, in its

. 1
middle 3 area, one 1*°? can be chosen such that the

I’ crosses k times with 77 while other I°°’’s in

the same area cross at least k times. As a result, the

minimum |77 in the middle (1/3),, area could be

g-éL. Along the chosen I*?, a

m-light can be built up. The minimum length m-

estimated as

light graphs that has less or equal length than that
of m-light will be found by the DP.
Proof: (Structure Theorem) One needs to figure out

how much more length m-light has than T By the

number m of crossings between 77 and a I°°?,

there are two cases to be considered as in Fig. 7.
Case I For a rectangle, there is a *Y, which is
crossed k (< m) times by 7', where k is the

minimum number of the crossings that a {*°? in the

rectangle may have.
Case II For a rectangle, all the I°’’s cross with

7" more than m times.

In Case I, the maximum length difference between

—
)

rare Crossings many crossings

¢ steiner point ° portal line-separator

) densearea —— interconnecting lines

ozl 7. wxt
Fig. 7. Crossings.
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T" and m-light in a rectangle can be 3k(g) when

all the crossing points of m-light at the portals are

steiner points of degree 3, and each of the associated
. L
edges increase the length up to o to reach the

nearest target-points. This is due to the properties of

steiner tree interconnections " . Thus, the ratio of the

length difference to 7" in the rectangle turns out to

3k

EL 18 logn
be: = —. Now one may let m = O( )

EL, m

23
so that the ratio of the length of m-light to |7 is
< (1+£)= (1+¢).

m

In Case II, the estimated minimum |7'| in the

m 1 .
5 §L since k=m.

Let br be a bridge inside a sub-rectangle. A

(1/3),, area of a rectangle is

bridge 1s a line segment that lies in parallel with and
tightly close to (, but not touching to) the I*? in the
rectangle. Note that a rectangle should contain two
br's because each of the two subrectangles may
have one br respectively. The ‘ 's, s's and steiner
points of a m-light in one sub-rectangle will shown
to be connected to those in the other sub-rectangle
with the intentional use of br's for the analysis
purpose. In fact, a br is one of {'s. Because the
density of the ¢'s in this case is determined to be
high, two br’s of length L are added to form a
m-light, instead of considering the details, which

would involve exponential time complexity, of the

crossings. Actually, all ¢'s and s's are assumed to
be touched with a br, instead of passing through
portals. Later the two br's are connected with each
other through the portal by an infinitesimally short

line segment whose lengths can be ignored. So, the

ratio of the length difference to the 7' in the

_ 2L E, As a result, the length
m, m
2

rectangle is:

1
3L
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. . 18 .
difference from the two cases is at most el Since

the tiling has depth of O(logn), the approximation

ratio 1is

(1+ E)ouogn)
m

m(LO(logn))
(122"

m
=0l < (1+e€)

VIL Conclusion

The purpose of the scheme is to find the location,
called steiner point, so as to form the interconnection
that has the shortest total length. One may design a
polynomial time algorithm from the scheme. As the
algorithm can handle more portals, execution time
will increase within a polynomial bound, giving the
output with a shorter total length. After having the
result of the interconnection algorithm; if there are
any two given nodes, which should be connected
directly, and which are located far each other beyond
the transmission radius of the sensor node, one needs
to have another consideration about putting multiple
relay nodes between them. This may lead to
additional

analysis, and thus make an independent research

scheme and algorithm with its own

later. In implementing the algorithms, the schemes
may give the guide for the possible pair of the
expected precision of the results and the run time for

it, as well as the procedures of the algorithms.
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