• Title/Summary/Keyword: Second order partial differential equation

Search Result 38, Processing Time 0.025 seconds

Oscillation of Certain Second Order Damped Quasilinear Elliptic Equations via the Weighted Averages

  • Xia, Yong;Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.191-202
    • /
    • 2007
  • By using the weighted averaging techniques, we establish oscillation criteria for the second order damped quasilinear elliptic differential equation $$\sum_{i,j=1}^{N}D_i(a_{ij}(x){\parallel}Dy{\parallel}^{p-2}D_jy)+{\langle}b(x),\;{\parallel}Dy{\parallel}^{p-2}Dy{\rangle}+c(x)f(y)=0,\;p>1$$. The obtained theorems include and improve some existing ones for the undamped halflinear partial differential equation and the semilinear elliptic equation.

  • PDF

A NEW METHOD FOR SOLVING NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

  • Gachpazan. M.;Kerayechian, A.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.453-465
    • /
    • 2000
  • In this paper, a new method for finding the approximate solution of a second order nonlinear partial differential equation is introduced. In this method the problem is transformed to an equivalent optimization problem. them , by considering it as a distributed parameter control system the theory of measure is used for obtaining the approximate solution of the original problem.

SOLVING OF SECOND ORDER NONLINEAR PDE PROBLEMS BY USING ARTIFICIAL CONTROLS WITH CONTROLLED ERROR

  • Gachpazan, M.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.173-184
    • /
    • 2004
  • In this paper, we find the approximate solution of a second order nonlinear partial differential equation on a simple connected region in $R^2$. We transfer this problem to a new problem of second order nonlinear partial differential equation on a rectangle. Then, we transformed the later one to an equivalent optimization problem. Then we consider the optimization problem as a distributed parameter system with artificial controls. Finally, by using the theory of measure, we obtain the approximate solution of the original problem. In this paper also the global error in $L_1$ is controlled.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

GENERALISED COMMON FIXED POINT THEOREM FOR WEAKLY COMPATIBLE MAPPINGS VIA IMPLICIT CONTRACTIVE RELATION IN QUASI-PARTIAL Sb-METRIC SPACE WITH SOME APPLICATIONS

  • Lucas Wangwe;Santosh Kumar
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.1-24
    • /
    • 2023
  • In the present paper, we prove common fixed point theorems for a pair of weakly compatible mappings under implicit contractive relation in quasi-partial Sb-metric spaces. We also provide an illustrative example to support our results. Furthermore, we will use the results obtained for application to two boundary value problems for the second-order differential equation. Also, we prove a common solution for the nonlinear fractional differential equation.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

ALMOST PERIODIC SOLUTIONS OF PERIODIC SECOND ORDER LINEAR EVOLUTION EQUATIONS

  • Nguyen, Huu Tri;Bui, Xuan Dieu;Vu, Trong Luong;Nguyen, Van Minh
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.223-240
    • /
    • 2020
  • The paper is concerned with periodic linear evolution equations of the form x"(t) = A(t)x(t)+f(t), where A(t) is a family of (unbounded) linear operators in a Banach space X, strongly and periodically depending on t, f is an almost (or asymptotic) almost periodic function. We study conditions for this equation to have almost periodic solutions on ℝ as well as to have asymptotic almost periodic solutions on ℝ+. We convert the second order equation under consideration into a first order equation to use the spectral theory of functions as well as recent methods of study. We obtain new conditions that are stated in terms of the spectrum of the monodromy operator associated with the first order equation and the frequencies of the forcing term f.

ORTHOGONAL POLYNOMIALS SATISFYING PARTIAL DIFFERENTIAL EQUATIONS BELONGING TO THE BASIC CLASS

  • Lee, J.K.;L.L. Littlejohn;Yoo, B.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.1049-1070
    • /
    • 2004
  • We classify all partial differential equations with polynomial coefficients in $\chi$ and y of the form A($\chi$) $u_{{\chi}{\chi}}$ + 2B($\chi$, y) $u_{{\chi}y}$ + C(y) $u_{yy}$ + D($\chi$) $u_{{\chi}}$ + E(y) $u_{y}$ = λu, which has weak orthogonal polynomials as solutions and show that partial derivatives of all orders are orthogonal. Also, we construct orthogonal polynomials in d-variables satisfying second order partial differential equations in d-variables.s.

TIME DISCRETIZATION WITH SPATIAL COLLOCATION METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

  • Kim Chang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.19-38
    • /
    • 2006
  • We analyze the spectral collocation approximation for a parabolic partial integrodifferential equations(PIDE) with a weakly singular kernel. The space discretization is based on the spectral collocation method and the time discretization is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability and second order convergence result for fully discrete scheme.

  • PDF

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.