DOI QR코드

DOI QR Code

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Received : 2013.03.13
  • Accepted : 2013.07.08
  • Published : 2013.08.15

Abstract

The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

Keywords

References

  1. A. Arakawa, Computational design for long-term numerical integration of the equation of fluid motion: Two-dimensional incompressible flow, Part 1, J. Comput. Phys. 1 (1966), no. 1, 119-143; Reprinted in J. Comput. Phys. 135 (1997), 103-114. https://doi.org/10.1006/jcph.1997.5697
  2. R. Adams, Sobolev spaces, Academic Press, 1975.
  3. C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincare 2 (1985), no. 2, 101-118. https://doi.org/10.1016/S0294-1449(16)30405-X
  4. D. Braess, Finite elements, Cambrige, 2001.
  5. P. M. Bellan and B. L. Shader, Fundamentals of plasma physics, Cambrige, 2006.
  6. J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differen. Equat. 25 (1977), 342-364. https://doi.org/10.1016/0022-0396(77)90049-3
  7. C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys. 22 (1976), 330-351. https://doi.org/10.1016/0021-9991(76)90053-X
  8. F. Catte, P. L. Lions, J. M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM. J. Numer. Anal., 29 (1) (1992), pp.182-193. https://doi.org/10.1137/0729012
  9. G. H. Cottet and P. A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations, SIAM. J. Numer. Anal., 21, (1) (1984), pp.52-76. https://doi.org/10.1137/0721003
  10. L. C. Evans, Partial Differenctial Equations. Graduate Studies in Mathematics vol 19. American Mathematical Society Providence, Rhode Island., 1998.
  11. E. Fijakow, A numerical solution to the Vlasov equation, Comput. Phys. Comm. 116 (1999), 319-328. https://doi.org/10.1016/S0010-4655(98)00146-5
  12. F. Filbet and E. Sonnendrucker, Comparison of eulerian Vlasov solvers, Com. Phys. Comm. 150 (2003), 247-266. https://doi.org/10.1016/S0010-4655(02)00694-X
  13. F. Filbet, E. Sonnendrucker and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys. 172 (2001), 166-187. https://doi.org/10.1006/jcph.2001.6818
  14. R. R. Gagne and M. M. Shoucri, A splitting scheme for the numerical solution of a one-dimensional Vlasov equation, J. Comput. Phys. 24 (1977), 445-449. https://doi.org/10.1016/0021-9991(77)90032-8
  15. V. Hutson and J. S. Pym, Applications of functional analysis and operator theory, Aca. Press INC. 1980.
  16. A. J. Klimas, A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions, J. Comput. Phys. 68 (1987), 202-226. https://doi.org/10.1016/0021-9991(87)90052-0
  17. R. J. LeVeque, Numerical methods for conservation laws, Birk. Verlag, 1992.
  18. G. Manfredi, Long time behavior of non linear Landau damping, Phys. Rev. Lett. 79 (1997), 2815-2818. https://doi.org/10.1103/PhysRevLett.79.2815
  19. T. Nakamura and T. Yabe, Cubic interpolated progation scheme for solving the Hyper-Dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Comm. 120 (1999), 122-154. https://doi.org/10.1016/S0010-4655(99)00247-7
  20. K. Prarrelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equat. 95 (1992), 281-303. https://doi.org/10.1016/0022-0396(92)90033-J
  21. E.Sonnendrucker, J. Roche, P. Bertrand and A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys. 149 (1999), 201-220. https://doi.org/10.1006/jcph.1998.6148
  22. E.Sonnendrucker, F. Filbet, A. Friedma, E. Oudet, and J. L. Vay, Vlasov simulations of beams with a moving grid, Comput. Phys. Comm. 164 (2004), 390-395. https://doi.org/10.1016/j.cpc.2004.06.077
  23. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational fluid mechanice and heat transfer, SPT, 1984.
  24. T. Umeda, Vlasov simulation of amplitude-modulated Langmuir waves, Phys. Plasmas 13, 2006.
  25. T. Umeda, A conservative and non-oscillatory scheme for Vlasov code simulations, Earth Plan. Space 60 (2008), 773-779. https://doi.org/10.1186/BF03352826
  26. S. Ukai and T. Okabe, On classical solutions in the large in time of twodimensional Vlasov's equation, Osaka J. Math. 15 (1978), 245-261.
  27. D. Yi and S. Lee, Fourth-order partial differential equations for image enhancement, AMC 175 (2006), 430-440.