DOI QR코드

DOI QR Code

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • Received : 2015.04.02
  • Accepted : 2015.05.29
  • Published : 2015.09.25

Abstract

In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

Keywords

References

  1. P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Review, 40 (1998) 789-837. https://doi.org/10.1137/S0036144597321156
  2. J.H. Bramble, R.D. Lazarov and J.E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp. 66-219 (1997) 935-955. https://doi.org/10.1090/S0025-5718-97-00848-X
  3. C. Bernardi and Y. Maday, Approximation Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris (1992).
  4. J. H. Bramble and T. Sun, A negative-norm least squares method for Reissner-Mindlin plates, Math. Comp., 67 (1998) 901-916. https://doi.org/10.1090/S0025-5718-98-00972-7
  5. Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994) 1785-1799. https://doi.org/10.1137/0731091
  6. Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997) 425-454. https://doi.org/10.1137/S0036142994266066
  7. Z. Cai and B.C. Shin, The discrete first-order system least squares: the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 40 (2002) 307-318. https://doi.org/10.1137/S0036142900381886
  8. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York (1988).
  9. C. L. Chang, Finite element approximation for grad-div type systems in the plane, SIAM J. Numer. Anal., 29 (1992) 452-461. https://doi.org/10.1137/0729027
  10. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, New York, 1978.
  11. J. Douglas, Jr., J.E. Santos and D. Sheen, Approximation of scalar waves in the space-frequency domain, Math. Model Mehtods Appl. Sci., 4 (1994) 509-531. https://doi.org/10.1142/S0218202594000297
  12. J. Douglas, Jr., J.E. Santos, D. Sheen and L.S. Bennethum, Frequency domain treatment of one-dimensional scalar waves, Math. Model Mehtods Appl. Sci., 3 (1993) 171-194. https://doi.org/10.1142/S0218202593000102
  13. G.J. Fix, M.D. Gunzburger and R.A. Nicolaides, On finite element methods of the least squares type, Comput. Math. Appl. 5-2 (1979) 87-98. https://doi.org/10.1016/0898-1221(79)90062-2
  14. G.J. Fix and E. Stephan, On the finite element-least squares approximation to higher order elliptic systems, Arch. Rational Mech. Anal., 91-2 (1985) 137-151. https://doi.org/10.1007/BF00276860
  15. X. Feng and D. Sheen, An elliptic regularity estimate for a problem arising from the frequency domain treatment of waves, Trans. Am. Math. Soc., 346 (1994) 475-487. https://doi.org/10.1090/S0002-9947-1994-1282886-6
  16. P. Hessari and B.-C. Shin, The least-squares pseudo-spectral method for Navier-Stokes equations, Comput. Math. Appl., 66 (2013) 318-329. https://doi.org/10.1016/j.camwa.2013.05.009
  17. S.D. Kim, H.-C. Lee and B.-C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41-4 (2003) 1370-1387. https://doi.org/10.1137/S0036142901398234
  18. S.D. Kim, H.-C. Lee and B.-C. Shin, Least-squares spectral collocation method for the Stokes equations, Numer. Meth. PDE., 20 (2004) 128-139. https://doi.org/10.1002/num.10085
  19. S.D. Kim and B.-C. Shin, $H^{-1}$ least-squares method for the velocity-pressure-stress formulation of Stokes equations, Appl. Numer. Math., 40 (2002) 451-465. https://doi.org/10.1016/S0168-9274(01)00095-2
  20. C.-O. Lee, J. Lee, D. Sheen and Y. Yeom, A frequency-domain parallel method for the numerical approximation of parabolic problems, Comput. Meth. Appl. Mech. Engrg., 169 (1999) 19-29. https://doi.org/10.1016/S0045-7825(98)00168-6
  21. C.-O. Lee, J. Lee and D. Sheen, Frequency domain formulation of linearized Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg., 187 (2000) 351-362. https://doi.org/10.1016/S0045-7825(99)00132-2
  22. J. Lee and D. Sheen, An accurate numerical inversion of Laplace transforms based on the location of their poles, Comput. Math. Appl., 48 (2004) 1415-1423. https://doi.org/10.1016/j.camwa.2004.08.003
  23. J. Lee and D. Sheen, A parallel method for backward parabolic problems based on the Laplace transformation, SIAM J. Numer. Anal., 44-4 (2006) 1466-1486. https://doi.org/10.1137/050624649
  24. A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least squares mixed finite elements for second order elliptic problems, SIAM J. Numer. Anal., 31 (1994) 1368-1377. https://doi.org/10.1137/0731071
  25. M. M. J. Proot and M. I. Gerritsma A least-squares spectral element formulation for the Stokes problem, J. of Sci. Comput., 17 (2002) 285-296. https://doi.org/10.1023/A:1015121219065
  26. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin Heidelberg (1994).
  27. D. Sheen, I.H. Sloan and V. Thomee, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math. Comp., 69 (2000) 177-195.
  28. D. Sheen, I.H. Sloan and V. Thomee, A parallel method for time-discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23-2 (2003) 269-299. https://doi.org/10.1093/imanum/23.2.269