• 제목/요약/키워드: Scalar curvature

검색결과 189건 처리시간 0.043초

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

T-STRUCTURE AND THE YAMABE INVARIANT

  • Sung, Chan-Young
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.435-443
    • /
    • 2012
  • The Yamabe invariant is a topological invariant of a smooth closed manifold, which contains information about possible scalar curvature on it. It is well-known that a product manifold $T^m{\times}B$ where $T^m$ is the m-dimensional torus, and B is a closed spin manifold with nonzero $\^{A}$-genus has zero Yamabe invariant. We generalize this to various T-structured manifolds, for example $T^m$-bundles over such B whose transition functions take values in Sp(m, $\mathbb{Z}$) (or Sp(m - 1, $\mathbb{Z}$) ${\oplus}\;{{\pm}1}$ for odd m).

THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

  • Kim, Eui Chul
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.431-440
    • /
    • 2013
  • Let ($M^3$, $g$) be a 3-dimensional closed Sasakian spin manifold. Let $S_{min}$ denote the minimum of the scalar curvature of ($M^3$, $g$). Let ${\lambda}^+_1$ > 0 be the first positive eigenvalue of the Dirac operator of ($M^3$, $g$). We proved in [13] that if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$, then ${\lambda}^+_1$ satisfies ${\lambda}^+_1{\geq}{\frac{S_{min}+6}{8}}$. In this paper, we remove the restriction "if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$" and prove $${\lambda}^+_1{\geq}\;\{\frac{S_{min}+6}{8}\;for\;-\frac{3}{2}<S_{min}{\leq}30, \\{\frac{1+\sqrt{2S_{min}}+4}{2}}\;for\;S_{min}{\geq}30$$.

L2 HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

  • Yun, Gabjin
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1189-1208
    • /
    • 2017
  • In this paper, we study vanishing properties for $L^2$ harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f) is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial $L^2$ harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n - 2)/2, then there are no non-trivial $L^2$ harmonic 1-forms on (M, g). We also show that any multiplication of the total differential df by a function cannot be an $L^2$ harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and $L^2$ harmonic 1-forms, and handle their applications.

LAGUERRE CHARACTERIZATION OF SOME HYPERSURFACES

  • Fang, Jianbo;Li, Fengjiang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.875-884
    • /
    • 2016
  • Let x : $^{Mn-1}{\rightarrow}{\mathbb{R}}^n$ ($n{\geq}4$) be an umbilical free hyper-surface with non-zero principal curvatures. Then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, and a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. We denote the Laguerre scalar curvature by R and the trace-free Laguerre tensor by ${\tilde{L}}:=L-{\frac{1}{n-1}}tr(L)g$. In this paper, we prove a local classification result under the assumption of parallel Laguerre form and an inequality of the type $${\parallel}{\tilde{L}}{\parallel}{\leq}cR$$ where $c={\frac{1}{(n-3){\sqrt{(n-2)(n-1)}}}$ is appropriate real constant, depending on the dimension.

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

  • Chen, Xiaomin
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.707-719
    • /
    • 2020
  • In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies -6 ⩽ s ⩽ 6 for n = 1 and -2n(2n + 1) ${\frac{4n^2-4n+3}{4n^2-4n-1}}$ ⩽ s ⩽ 2n(2n + 1) for n ⩾ 2. Secondly, for a (2n + 1)-dimensional weakly Einstein contact metric (κ, μ)-manifold with κ < 1, we prove that it is flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for n = 1 and that for n ⩾ 2 there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group.

ALMOST QUASI-YAMABE SOLITONS ON LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS-[(LCS)n]

  • Jun, Jae-Bok;Siddiqi, Mohd. Danish
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.521-536
    • /
    • 2020
  • The object of the present paper is to study of Almost Quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons on an Lorentzian concircular structure manifolds briefly say (LCS)n-manifolds under infinitesimal CL-transformations and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Also we obtained a necessary and sufficient condition of an almost quasi-Yamabe soliton with respect to the CL-connection to be an almost quasi-Yamabe soliton on (LCS)n-manifolds with respect to Levi-Civita connection. Finally, we construct an example of steady almost quasi-Yamabe soliton on 3-dimensional (LCS)n-manifolds.

On Generalized Ricci Recurrent Spacetimes

  • Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.571-584
    • /
    • 2020
  • The object of the present paper is to characterize generalized Ricci recurrent (GR4) spacetimes. Among others things, it is proved that a conformally flat GR4 spacetime is a perfect fluid spacetime. We also prove that a GR4 spacetime with a Codazzi type Ricci tensor is a generalized Robertson Walker spacetime with Einstein fiber. We further show that in a GR4 spacetime with constant scalar curvature the energy momentum tensor is semisymmetric. Further, we obtain several corollaries. Finally, we cite some examples which are sufficient to demonstrate that the GR4 spacetime is non-empty and a GR4 spacetime is not a trivial case.

A LIOUVILLE TYPE THEOREM FOR HARMONIC MORPHISMS

  • Jung, Seoung-Dal;Liu, Huili;Moon, Dong-Joo
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.941-947
    • /
    • 2007
  • Let M be a complete Riemannian manifold and let N be a Riemannian manifold of nonpositive scalar curvature. Let ${\mu}0$ be the least eigenvalue of the Laplacian acting on $L^2-functions$ on M. We show that if $Ric^M{\ge}-{\mu}0$ at all $x{\in}M$ and either $Ric^M>-{\mu}0$ at some point x0 or Vol(M) is infinite, then every harmonic morphism ${\phi}:M{\to}N$ of finite energy is constant.