DOI QR코드

DOI QR Code

L2 HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

  • Yun, Gabjin (Department of Mathematics Myong Ji University)
  • Received : 2016.06.10
  • Published : 2017.07.01

Abstract

In this paper, we study vanishing properties for $L^2$ harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f) is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial $L^2$ harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n - 2)/2, then there are no non-trivial $L^2$ harmonic 1-forms on (M, g). We also show that any multiplication of the total differential df by a function cannot be an $L^2$ harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and $L^2$ harmonic 1-forms, and handle their applications.

Keywords

References

  1. A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
  2. H.-D. Cao, Geometry of complete gradient shrinking Ricci solitons, Geometry and Analysis. No. 1, Adv. Lect. Math. (ALM), vol. 17, pp. 227-246, Int. Press, Somerville, MA, 2011.
  3. H.-D. Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, pp. 1-38, Int. Press, Somerville, MA, 2010.
  4. H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. https://doi.org/10.4310/jdg/1287580963
  5. B. Chow et al., The Ricci flow: techniques and applications, Part I, Geometric aspects, Mathematical Surveys and Monographs, 135, American Mahtematical Society, Providence, RI, 2007.
  6. M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367. https://doi.org/10.1007/s00229-008-0210-y
  7. J. F. Escobar, A. Freire, and M. Min-Oo, $L^2$ vanishing theorems in positive curvature, Indiana Univ. Math. J. 42 (1993), no. 4, 1545-1554. https://doi.org/10.1512/iumj.1993.42.42070
  8. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Eqautions of Second Order, 2nd ed., Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berline-New York, 1983.
  9. R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), Vol. II, 7-136, International Press, Combridge, MA, 1995.
  10. H. Karcher and J. C. Wood, Nonexistence results and growth properties for harmonic maps and forms, J. Reine Angew. Math. 353 (1984), 165-180.
  11. J. Lott, Some geometric properties of the Bakry-Emery-Ricci tensor, Comment. Math. Helv. 78 (2003), no. 4, 865-883. https://doi.org/10.1007/s00014-003-0775-8
  12. O. Munteanu and N. Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539-561. https://doi.org/10.1007/s12220-011-9252-6
  13. O. Munteanu and J. Wang, Volume growth of complete gradient shrinking Ricci solitons, arXive:0903.3927v2 [math.DG] 18 Aug 2009.
  14. P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329-345. https://doi.org/10.2140/pjm.2009.241.329
  15. P. Petersen and W. Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), no. 4, 2277-2300. https://doi.org/10.2140/gt.2010.14.2277
  16. M. Vieira, Harmonic forms on manifolds with non-negative Bakry-Emery-Ricci curvature, Arch. Math. 101 (2013), no. 6, 581-590. https://doi.org/10.1007/s00013-013-0594-0