DOI QR코드

DOI QR Code

ON THE UNIFORM CONVERGENCE OF SPECTRAL EXPANSIONS FOR A SPECTRAL PROBLEM WITH A BOUNDARY CONDITION RATIONALLY DEPENDING ON THE EIGENPARAMETER

  • Goktas, Sertac (Department of Mathematics Mersin University) ;
  • Kerimov, Nazim B. (Department of Mathematics Khazar University) ;
  • Maris, Emir A. (Department of Mathematics Mersin University)
  • Received : 2016.06.08
  • Published : 2017.07.01

Abstract

The spectral problem $$-y^{{\prime}{\prime}}+q(x)y={\lambda}y,\;0 < x < 1, \atop y(0)cos{\beta}=y^{\prime}(0)sin{\beta},\;0{\leq}{\beta}<{\pi};\;{\frac{y^{\prime}(1)}{y(1)}}=h({\lambda})$$ is considered, where ${\lambda}$ is a spectral parameter, q(x) is real-valued continuous function on [0, 1] and $$h({\lambda})=a{\lambda}+b-\sum\limits_{k=1}^{N}{\frac{b_k}{{\lambda}-c_k}},$$ with the real coefficients and $a{\geq}0$, $b_k$ > 0, $c_1$ < $c_2$ < ${\cdots}$ < $c_N$, $N{\geq}0$. The sharpened asymptotic formulae for eigenvalues and eigenfunctions of above-mentioned spectral problem are obtained and the uniform convergence of the spectral expansions of the continuous functions in terms of eigenfunctions are presented.

Keywords

References

  1. N. K. Bary,A Treatise on Trigonometric Series, Vol. I, Pergemon Press, Oxford, 1964.
  2. P. A. Binding, P. J. Browne, and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the parameter. I, Proc. Edinb. Math. Soc. 45 (2002), 631-645.
  3. D. A. Gulyaev, On the uniform convergence of spectral expansions for a spectral problem with boundary conditions of the third kind one of which contains the spectral parameter, Differ. Equ. 47 (2011), no. 10, 1503-1507.
  4. D. A. Gulyaev, On the uniform convergence in $W^m_2$ of spectral expansions for a spectral problem with boundary conditions of the third kind one of which contains the spectral parameter, Differ. Equ. 48 (2012), no. 10, 1450-1453.
  5. N. Yu. Kapustin, On the uniform convergence of the Fourier Series for a spectral problem with squared spectral parameter in a boundary condition, Differ. Equ. 46 (2010), no. 10, 1504-1507.
  6. N. Yu. Kapustin, On the uniform convergence in $C^1$ of Fourier Series for a spectral problem with squared spectral parameter in a boundary condition, Differ. Equ. 47 (2011), no. 10, 1394-1399.
  7. N. Yu. Kapustin, On the spectral problem arising in the solution of a mixed problem for the heat equation with a mixed derivative in the boundary condition, Differ. Equ. 48 (2012), no. 5, 694-699.
  8. N. Yu. Kapustin and E. I. Moiseev, The basis property in $L_p$ of the systems of eigenfunctions corresponding two problems with a spectral parameter in the boundary conditions, Differ. Equ. 36 (2000), no. 10, 1498-1501. https://doi.org/10.1007/BF02757389
  9. N. Yu. Kapustin and E. I. Moiseev, Convergence of spectral expansions for functions of the Holder class for two problems with spectral parameter in the boundary condition, Differ. Equ. 36 (2000), 1182-1188. https://doi.org/10.1007/BF02754186
  10. N. Yu. Kapustin and E. I. Moiseev, A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition, Differ. Equ. 37 2001, no. 12, 1677-1683. https://doi.org/10.1023/A:1014406921176
  11. N. B. Kerimov and Y. N. Aliyev, The basis property in $L_p$ of the boundary value problem rationally dependent on the eigenparameter, Studia Math. 174 (2006), no. 2, 201-212. https://doi.org/10.4064/sm174-2-6
  12. N. B. Kerimov, S. Goktas, and E. A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, Electron. J. Differential Equations 2016 (2016), no. 80, 14 pp.
  13. N. B. Kerimov and E. A. Maris, On the basis properties and convergence of expansions in terms of eigenfunctions for a spectral problem with a spectral parameter in the boundary condition, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 40 (2014), 245-258.
  14. N. B. Kerimov and E. A. Maris, On the uniform convergence of the Fourier series for one spectral problem with a spectral parameter in a boundary condition, Math. Meth. Appl. Sci. (2015), DOI: 10.1002/mma.3640.
  15. N. B. Kerimov and V. S. Mirzoev, On the basis properties of one spectral problem with a spectral parameter in a boundary condition, Siberian Math. J. 44 (2003), no. 1, 813-816. https://doi.org/10.1023/A:1025932618953
  16. B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Kluwer Academic Publishers, Netherlands, 1991.
  17. D. B. Marchenkov, On the convergence of spectral expansions of functions for problems with a spectral parameter in a boundary condition, Differ. Equ. 41 (2005), no. 10, 1419-1422.