References
- N. K. Bary,A Treatise on Trigonometric Series, Vol. I, Pergemon Press, Oxford, 1964.
- P. A. Binding, P. J. Browne, and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the parameter. I, Proc. Edinb. Math. Soc. 45 (2002), 631-645.
- D. A. Gulyaev, On the uniform convergence of spectral expansions for a spectral problem with boundary conditions of the third kind one of which contains the spectral parameter, Differ. Equ. 47 (2011), no. 10, 1503-1507.
-
D. A. Gulyaev, On the uniform convergence in
$W^m_2$ of spectral expansions for a spectral problem with boundary conditions of the third kind one of which contains the spectral parameter, Differ. Equ. 48 (2012), no. 10, 1450-1453. - N. Yu. Kapustin, On the uniform convergence of the Fourier Series for a spectral problem with squared spectral parameter in a boundary condition, Differ. Equ. 46 (2010), no. 10, 1504-1507.
-
N. Yu. Kapustin, On the uniform convergence in
$C^1$ of Fourier Series for a spectral problem with squared spectral parameter in a boundary condition, Differ. Equ. 47 (2011), no. 10, 1394-1399. - N. Yu. Kapustin, On the spectral problem arising in the solution of a mixed problem for the heat equation with a mixed derivative in the boundary condition, Differ. Equ. 48 (2012), no. 5, 694-699.
-
N. Yu. Kapustin and E. I. Moiseev, The basis property in
$L_p$ of the systems of eigenfunctions corresponding two problems with a spectral parameter in the boundary conditions, Differ. Equ. 36 (2000), no. 10, 1498-1501. https://doi.org/10.1007/BF02757389 - N. Yu. Kapustin and E. I. Moiseev, Convergence of spectral expansions for functions of the Holder class for two problems with spectral parameter in the boundary condition, Differ. Equ. 36 (2000), 1182-1188. https://doi.org/10.1007/BF02754186
- N. Yu. Kapustin and E. I. Moiseev, A remark on the convergence problem for spectral expansions corresponding to a classical problem with spectral parameter in the boundary condition, Differ. Equ. 37 2001, no. 12, 1677-1683. https://doi.org/10.1023/A:1014406921176
-
N. B. Kerimov and Y. N. Aliyev, The basis property in
$L_p$ of the boundary value problem rationally dependent on the eigenparameter, Studia Math. 174 (2006), no. 2, 201-212. https://doi.org/10.4064/sm174-2-6 - N. B. Kerimov, S. Goktas, and E. A. Maris, Uniform convergence of the spectral expansions in terms of root functions for a spectral problem, Electron. J. Differential Equations 2016 (2016), no. 80, 14 pp.
- N. B. Kerimov and E. A. Maris, On the basis properties and convergence of expansions in terms of eigenfunctions for a spectral problem with a spectral parameter in the boundary condition, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 40 (2014), 245-258.
- N. B. Kerimov and E. A. Maris, On the uniform convergence of the Fourier series for one spectral problem with a spectral parameter in a boundary condition, Math. Meth. Appl. Sci. (2015), DOI: 10.1002/mma.3640.
- N. B. Kerimov and V. S. Mirzoev, On the basis properties of one spectral problem with a spectral parameter in a boundary condition, Siberian Math. J. 44 (2003), no. 1, 813-816. https://doi.org/10.1023/A:1025932618953
- B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Kluwer Academic Publishers, Netherlands, 1991.
- D. B. Marchenkov, On the convergence of spectral expansions of functions for problems with a spectral parameter in a boundary condition, Differ. Equ. 41 (2005), no. 10, 1419-1422.