DOI QR코드

DOI QR Code

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang (Department of Mathematics Dongguk University) ;
  • Kumar, Devendra (Department of Mathematics JECRC University) ;
  • Singh, Jagdev (Department of Mathematics JECRC University) ;
  • Swroop, Ram (Department of Mathematics Arya Institute of Engineering & Technology)
  • Received : 2016.06.13
  • Published : 2017.07.01

Abstract

We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

Keywords

References

  1. S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A 360 (2006), no. 1, 109-113. https://doi.org/10.1016/j.physleta.2006.07.065
  2. E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models, J. Math. Anal. Appl. 325 (2007), no. 1, 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087
  3. O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals 89 (2016), 552-559. https://doi.org/10.1016/j.chaos.2016.03.026
  4. B. S. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals 89 (2016), 547-551. https://doi.org/10.1016/j.chaos.2016.03.020
  5. M. A. Asiru, Sumudu transform and the solution of integral equations of convolution type, Internat. J. Math. Ed. Sci. Tech. 32 (2001), no. 6, 906-910. https://doi.org/10.1080/002073901317147870
  6. A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput. 273 (2016), 948-956.
  7. A. Atangana and E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of $CD_4{^+}T$ cells and attractor one-dimensional Keller-Segel equations, Adv. Di erence Equ. 2013 (2013), Article 94, 14 pp. https://doi.org/10.1186/1687-1847-2013-14
  8. A. Atangana and R. T. Alqahtani, Stability analysis of nonlinear thin viscous fluid sheet flow equation with local fractional variable order derivative, J. Comput. Theor. Nanosci. 13 (2016), no. 5, 2710-2717. https://doi.org/10.1166/jctn.2016.4906
  9. A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci. 20 (2016), no. 2, 763-769. https://doi.org/10.2298/TSCI160111018A
  10. A. Atangana and A. Kilicman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 737481, 12 pp.
  11. A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals 89 (2016), 447-454. https://doi.org/10.1016/j.chaos.2016.02.012
  12. F. B. M. Belgacem and E. H. N. Al-Shemas, Towards a Sumudu based estimation of large scale disasters environmental fitness changes adversely affecting population dispersal and persistence, AIP Conference Proceedings, 1637, 1442 (2014); doi: 10.1063/1.4907311.
  13. F. B. M. Belgacem and A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, J. Appl. Math. Stoch. Anal. 2006 (2006), Article ID 91083, 23 pp.
  14. F. B. M. Belgacem, A. A. Karaballi, and S. L Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng. 3 (2003), no. 3-4, 103-118.
  15. M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969.
  16. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 73-85.
  17. J. Choi and D. Kumar, Solutions of generalized fractional kinetic equations involving Aleph functions, Math. Commun. 20 (2015), no.1, 113-123.
  18. A. Choudhary, D. Kumar, and J. Singh, Analytical solution of fractional differential equations arising in fluid mechanics by using Sumudu transform method, Nonlinear Eng. Model. Appl. 3 (2014), no. 3, 133-139.
  19. R. Darzi, B. Mohammadzade, S. Mousavi, and R. Beheshti, Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation, J. Math. Comput. Sci. 6 (2013), 79-84. https://doi.org/10.22436/jmcs.06.01.08
  20. H. Eltayeb and A. Kilcman, On some applications of a new integral transform, Int. J. Math. Anal. 4 (2010), no. 1-4, 123-132.
  21. Z. Z. Ganji, D. D. Ganji, H. Jafari, and M. Rostamian, Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives, Topol. Methods Nonlinear Anal. 31 (2008), no. 2, 341-348.
  22. Q. Ghori, M. Ahmed, and A. M. Siddiqui, Application of homotopy perturbation method to squeezing flow of a Newtonian fluid, Int. J. Nonlinear Sci. 8 (2007), 179-184.
  23. J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178 (1999), no. 3-4, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  24. J.-H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (2003), no. 1, 73-79. https://doi.org/10.1016/S0096-3003(01)00312-5
  25. J.-H. He, New interpretation of homotopy perturbation method, Internat. J. Modern Phys. B 20 (2006), no. 18, 2561-2568. https://doi.org/10.1142/S0217979206034819
  26. H. Jafari, S. Ghasempoor, and C. M. Khalique, A comparison between Adomian's polynomials and He's polynomials for nonlinear functional equations, Math. Probl. Eng. 2013 (2013), Article ID 943232, 4 pp.
  27. H. Jafari, A. Golbabai, S. Seifi, and K. Sayevand, Homotopy analysis method for solving multi-term linear and nonlinear di usion wave equations of fractional order, Comput. Math. Appl. 59 (2010), no. 3, 1337-1344. https://doi.org/10.1016/j.camwa.2009.06.020
  28. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
  29. A. Kilcman and H. Eltayeb, A note on classi cation of hyperbolic and elliptic equations with polynomial coefficients, Appl. Math. Lett. 21 (2008), no. 11, 1124-1128. https://doi.org/10.1016/j.aml.2007.11.002
  30. A. Kilcman and H. Eltayeb, A note on integral transforms and partial differential equations, Appl. Math. Sci. 4 (2010), no. 1-4, 109-118.
  31. S. Kumar, Y. Khan, and A. Yildirim, A mathematical modeling arising in the chemical systems and its approximate numerical solution, Asia-Pac. J. Chem. Eng. 7 (2012), 835-840. https://doi.org/10.1002/apj.647
  32. S. J. Liao, The Proposed Homotopy Analysis Technique for the Solutions of Nonlinear Problems, PhD thesis, Shanghai Jiao Tong University, 1992.
  33. S. J. Liao, Homotopy analysis method a new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Numer. Simul. 2 (1997), 95-100. https://doi.org/10.1016/S1007-5704(97)90047-2
  34. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, 2003.
  35. S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004), no. 2, 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7
  36. J. Liu and G. Hou, Numerical solutions of the space- and time-fractional coupled Burgers equations by generalized differential transform method, Appl. Math. Comput. 217 (2011), no. 16, 7001-7008. https://doi.org/10.1016/j.amc.2011.01.111
  37. J. Losada and J. J. Nieto, Properties of the new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 87-92.
  38. A. Mastroberardino, Homotopy analysis method applied to electrohydrodynamic flow, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 7, 2730-2736. https://doi.org/10.1016/j.cnsns.2010.10.004
  39. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, USA, 1993.
  40. J. C. Nassar, J. F. Revelli, and R. J. Bowman, Application of the homotopy analysis method to the Poisson-Boltzmann equation for semiconductor devices, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 6, 2501-2512. https://doi.org/10.1016/j.cnsns.2010.09.015
  41. P. K. Pandey, Om P. Singh, and V. K. Baranwal, An analytic algorithm for the space-time fractional advection-dispersion equation, Comput. Phys. Comm. 182 (2011), no. 5, 1134-1144. https://doi.org/10.1016/j.cpc.2011.01.015
  42. S.-H. Park and J.-H. Kim, Homotopy analysis method for option pricing under stochastic volatility, Appl. Math. Lett. 24 (2011), no. 10, 1740-1744. https://doi.org/10.1016/j.aml.2011.04.034
  43. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, 1999.
  44. Y. M. Qin and D. Q. Zeng, Homotopy perturbation method for the q-diffusion equation with a source term, Commun. Fract. Calc. 3 (2012), 34-37.
  45. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.
  46. J. Singh, D. Kumar, and A. Kilicman, Application of homotopy perturbation Sumudu transform method for solving heat and wave-like equations, Malays. J. Math. Sci. 7 (2013), no. 1, 79-95.
  47. J. Singh, D. Kumar, and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform, Abstr. Appl. Anal. 2013 (2013), Article ID 934060, 8 pp.
  48. H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu, and X.-J. Yang, Local fractional Sumudu transform with applications to IVPs on Cantor sets, Abstr. Appl. Anal. 2014 (2014), Article ID 620529, 7 pp.
  49. G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Internat. J. Math. Ed. Sci. Tech. 24 (1993), no. 1, 35-43. https://doi.org/10.1080/0020739930240105
  50. G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Math. Engrg. Indust. 6 (1998), no. 4, 319-329.
  51. A. Yildirim, He's homotopy perturbation method for solving the space- and time- fractional telegraph equations, Int. J. Comput. Math. 87 (2010), no. 13, 2998-3006. https://doi.org/10.1080/00207160902874653
  52. S. P. Zhu, An exact and explicit solution for the valuation of American put options, Quant. Finance 6 (2006), no. 3, 229-242. https://doi.org/10.1080/14697680600699811
  53. M. Zurigat, S. Momani, and A. Alawneh, Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method, Comput. Math. Appl. 59 (2010), no. 3, 1227-1235. https://doi.org/10.1016/j.camwa.2009.07.002