THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

Eui Chul Kim

Abstract

Let $\left(M^{3}, g\right)$ be a 3-dimensional closed Sasakian spin manifold. Let $S_{\text {min }}$ denote the minimum of the scalar curvature of $\left(M^{3}, g\right)$. Let $\lambda_{1}^{+}>0$ be the first positive eigenvalue of the Dirac operator of $\left(M^{3}, g\right)$. We proved in [13] that if λ_{1}^{+}belongs to the interval $\lambda_{1}^{+} \in\left(\frac{1}{2}, \frac{5}{2}\right)$, then λ_{1}^{+}satisfies $\lambda_{1}^{+} \geq \frac{S_{\min }+6}{8}$. In this paper, we remove the restriction "if λ_{1}^{+}belongs to the interval $\lambda_{1}^{+} \in\left(\frac{1}{2}, \frac{5}{2}\right)$ " and prove

$$
\lambda_{1}^{+} \geq \begin{cases}\frac{S_{\min }+6}{8} & \text { for } \quad-\frac{3}{2}<S_{\min } \leq 30 \\ \frac{1+\sqrt{2 S_{\min }+4}}{2} & \text { for } \quad S_{\min } \geq 30\end{cases}
$$

1. Introduction

Let $\left(M^{n}, g\right)$ be a closed Riemannian spin manifold. The Levi-Civita connection ∇ and the Dirac operator D, acting on sections $\psi \in \Gamma(\Sigma(M))$ of the spinor bundle $\Sigma(M)$ over M^{n}, are respectively expressed as

$$
\nabla_{X} \psi=X(\psi)+\frac{1}{4} \sum_{u=1}^{n} E_{u} \cdot \nabla_{X} E_{u} \cdot \psi
$$

and

$$
D \psi=\sum_{u=1}^{n} E_{u} \cdot \nabla_{E_{u}} \psi
$$

where $X(\psi)$ is the directional derivative of ψ along a vector field $X \in \Gamma(T(M))$, $\left(E_{1}, \ldots, E_{n}\right)$ is a local orthonormal frame on $\left(M^{n}, g\right)$ and the dot "." indicates the Clifford multiplication [6]. Since $\left(M^{n}, g\right)$ is a closed manifold, the spectrum $\operatorname{Spec}(D)$ of the Dirac operator D is discrete and real and will be written as

$$
\cdots \leq \lambda_{2}^{-} \leq \lambda_{1}^{-} \leq 0 \leq \lambda_{1}^{+} \leq \lambda_{2}^{+} \leq \cdots,
$$

where each eigenvalue except zero is repeated as many times as its multiplicity. The nonzero eigenvalue $\lambda_{1}^{-} \neq 0$ and $\lambda_{1}^{+} \neq 0$ are called the first negative eigenvalue and the first positive eigenvalue, respectively. The eigenvalue

[^0]2010 Mathematics Subject Classification. 53C25, 53C27.
Key words and phrases. Dirac operator, eigenvalues, Sasakian manifolds.
$\lambda_{1} \in \operatorname{Spec}(D)$ with $\left|\lambda_{1}\right|=\min \left\{\left|\lambda_{1}^{-}\right|,\left|\lambda_{1}^{+}\right|\right\}$is called the first eigenvalue. A classical result about the first Dirac eigenvalue is the Friedrich inequality

$$
\begin{equation*}
\left|\lambda_{1}\right| \geq \sqrt{\frac{n S_{\min }}{4(n-1)}} \tag{1.1}
\end{equation*}
$$

where $S_{\text {min }}$ denotes the minimum of the scalar curvature $[5,9]$. (1.1) holds for all closed Riemannian spin manifolds (M^{n}, g) with positive scalar curvature $S>0$ and the limiting case of this inequality is characterized by the existence of a Killing spinor ψ,

$$
\nabla_{X} \psi=a X \cdot \psi, \quad a \in \mathbb{R}
$$

If $\left(M^{n}, g\right)$ is of odd dimension $n, n \equiv 3 \bmod 4$, then $\operatorname{Spec}(D)$ is generally asymmetric with respect to zero $[2,11]$. In that case, a problem of interest is to find an optimal estimate for λ_{1}^{-}and that for λ_{1}^{+}, respectively $[7,13]$.

A Sasakian manifold is an odd-dimensional Riemannian manifold ($M^{2 m+1}$, g), $m \geq 1$, equipped with a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η that satisfy

$$
\begin{aligned}
& \eta(\xi)=1, \quad \phi^{2}(X)=-X+\eta(X) \xi \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \\
& \left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi-\eta(Y) X
\end{aligned}
$$

for all vector fields $X, Y \in \Gamma(\Sigma(M))$. Over Sasakian spin manifolds, a special class of spinors deserves attention.
Definition 1.1. A spinor field ψ on Sasakian spin manifold ($M^{2 m+1}, \phi, \xi, \eta, g$) is called an eta-Killing spinor with Killing pair (a, b) if it satisfies

$$
\nabla_{X} \psi=a X \cdot \psi+b \eta(X) \xi \cdot \psi
$$

for some real numbers $a, b \in \mathbb{R}$ and for all vector fields X.
For the relations between the Killing pair (a, b) of an eta-Killing spinor and the geometry of the Sasakian manifold, we refer to [8, 12]. It turns out in Section 3 that the existence of an eta-Killing spinor characterizes the limiting case of inequalities (3.4)-(3.6).

As discussed in the introduction of [13], an observation of the Dirac spectrum of a round sphere $S^{2 m+1}$ with Berger metric gives rise to the following two questions:

Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ be a 3 -dimensional closed Sasakian spin manifold.
(1) Does the first negative Dirac eigenvalue λ_{1}^{-}on $\left(M^{3}, \phi, \xi, \eta, g\right)$ satisfies

$$
\begin{equation*}
\lambda_{1}^{-} \leq \frac{1-\sqrt{2 S_{\min }+4}}{2} \quad \text { for } \quad S_{\min }>-\frac{3}{2} ? \tag{1.2}
\end{equation*}
$$

(2) Does the first positive Dirac eigenvalue λ_{1}^{+}on $\left(M^{3}, \phi, \xi, \eta, g\right)$ satisfies

$$
\lambda_{1}^{+} \geq \begin{cases}\frac{S_{\min }+6}{8} & \text { for } \quad-2<S_{\min } \leq 30 \tag{1.3}\\ \frac{1+\sqrt{2 S_{\min }+4}}{2} & \text { for } \quad S_{\min } \geq 30\end{cases}
$$

Note that both (1.2) and (1.3) improve Friedrich's inequality (1.1). We proved in [13] that the answer to the first question is positive. But as to the second question, we gave only a partial answer (see Theorem 3.2 in [13]):
If the first positive Dirac eigenvalue λ_{1}^{+}belongs to the interval $\lambda_{1}^{+} \in\left(\frac{1}{2}, \frac{5}{2}\right)$, then λ_{1}^{+}satisfies $\lambda_{1}^{+} \geq \frac{S_{\min }+6}{8}$.

The aim of this paper is to give a complete answer to the second question, removing the uncomfortable restriction "if λ_{1}^{+}belongs to the interval $\lambda_{1}^{+} \in$ $\left(\frac{1}{2}, \frac{5}{2}\right)$ ". Namely, we will prove Theorem 3.1. When comparing (3.10) with (1.3), there is a slight change in the scalar curvature restriction from $-2<$ $S_{\min } \leq 30$ to $-\frac{3}{2}<S_{\min } \leq 30$. It is pointed out in Remark 3.3 that the latter restriction is more reasonable.

2. A natural deformation of the Levi-Civita connection

To prove Proposition 3.1 in the next section, we will apply a deformation technique for spin connections. In the former part of this section we briefly review some general properties of regular Sasakian manifolds [3, 4, 14, 15], which help clarify the geometric implication of our deformation of the LeviCivita connection (see (2.9)).

A Sasakian manifold $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ is called regular if every point of $M^{2 m+1}$ has a neighbourhood through which any integral curve of the unit vector field ξ passes at most once. In that case, all the orbits of ξ have the same period and $M^{2 m+1}$ turns out to be the total space of a principal S^{1}-bundle $\pi: M^{2 m+1} \longrightarrow N^{2 m}$. Regarding the contact form η as a $U(1)$-connection form $\sqrt{-1} \eta$ with values in $\sqrt{-1} \mathbb{R}$, we can realize a closed 2 -form representing the first Chern class of the principal S^{1}-bundle $\pi: M^{2 m+1} \longrightarrow N^{2 m}$ as the curvature form

$$
c_{1}\left(M^{2 m+1} \longrightarrow N^{2 m}\right)=-\frac{1}{2 \pi}\left[\pi_{*} d \eta\right] \in H^{2}\left(N^{2 m} ; \mathbb{Z}\right)
$$

The Sasakian structure (ϕ, ξ, η, g) on the total space $M^{2 m+1}$ then induces a Kähler structure (J, g_{N}) on the base manifold $N^{2 m}$ via the relations

$$
\begin{align*}
\pi_{*} \circ \phi & =J \circ \pi_{*}, \tag{2.1}\\
g & =\pi^{*} g_{N}+\eta \otimes \eta . \tag{2.2}
\end{align*}
$$

As a consequence of (2.1)-(2.2), the fundamental form $\Phi=\frac{1}{2} d \eta$ on the total space $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ coincides with the pull-back $\Phi=\pi^{*} \Omega$ of the fundamental form Ω associated to $\left(N^{2 m}, J, g_{N}\right)$. Let $\left(F_{1}, \ldots, F_{2 m}\right)$ be a local orthonormal fame on $\left(N^{2 m}, J, g_{N}\right)$ and consider its horizontal lift $\left(F_{1}^{H}, \ldots, F_{2 m}^{H}, \xi\right)$. Proceeding as in Example 6.1 of [8], we find that the Levi-Civita connection ∇ of $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ is related to that ∇^{N} of $\left(N^{2 m}, J, g_{N}\right)$ by

$$
\begin{equation*}
\nabla_{F_{u}^{H}} F_{v}^{H}=\left(\nabla_{F_{u}}^{N} F_{v}\right)^{H}-\Omega_{u v} \xi \tag{2.3}
\end{equation*}
$$

where $\Omega_{u v}:=\Omega\left(F_{u}, F_{v}\right)=g_{N}\left(F_{u}, J\left(F_{v}\right)\right)$. Moreover, it holds that

$$
\begin{equation*}
\nabla_{F_{v}^{H}} \xi=\nabla_{\xi} F_{v}^{H}=-\phi\left(F_{v}^{H}\right) \tag{2.4}
\end{equation*}
$$

The Ricci tensor Ric and scalar curvature S of $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ are related to those $\operatorname{Ric}_{N}, S_{N}$ of $\left(N^{2 m}, J, g_{N}\right)$ by
(2.5) $\operatorname{Ric}\left(W_{1}^{H}, W_{2}^{H}\right)=\operatorname{Ric}_{N}\left(W_{1}, W_{2}\right)-2 g_{N}\left(W_{1}, W_{2}\right), \quad W_{1}, W_{2} \in \Gamma(T(N))$,
and

$$
\begin{equation*}
S=S_{N}-2 m \tag{2.6}
\end{equation*}
$$

respectively. Let us assume that $\left(N^{2 m}, J, g_{N}\right)$ is a spin manifold and $\left(M^{2 m+1}\right.$, $\phi, \xi, \eta, g)$ is equipped with a spin structure obtained by pull-back from ($N^{2 m}, J$, $\left.g_{N}\right)$. Let φ be a spinor field on $N^{2 m}$ and φ^{H} be its horizontal lift. Then the spinor derivative $\nabla \varphi^{H}$ on ($M^{2 m+1}, \phi, \xi, \eta, g$) is related to that $\nabla^{N} \varphi$ on $\left(N^{2 m}, J, g_{N}\right)$ by

$$
\begin{align*}
\nabla_{W^{H}} \varphi^{H} & =\left(\nabla_{W}^{N} \varphi\right)^{H}+\frac{1}{2} \phi\left(W^{H}\right) \cdot \xi \cdot \varphi^{H}, \quad W \in \Gamma(T(N)), \tag{2.7}\\
\nabla_{\xi} \varphi^{H} & =\frac{1}{2} \Phi \cdot \varphi^{H} . \tag{2.8}
\end{align*}
$$

A spinor field ψ on $M^{2 m+1}$ is projectable onto $N^{2 m}$, i.e., there exists some spinor field φ on $N^{2 m}$ with $\psi=\varphi^{H}$ if the directional derivative $\xi(\psi)$ vanishes identically. From (2.4), it follows that $\psi \in \Gamma(\Sigma(M))$ is projectable if and only if $\nabla_{\xi} \psi=\frac{1}{2} \Phi \cdot \psi$.

Let ($M^{2 m+1}, \phi, \xi, \eta, g$) be a (possibly irregular) Sasakian spin manifold. Let ξ^{\perp} denote the orthogonal complement of the vector field ξ in the tangent bundle $T(M)$. We deform the Levi-Civita connection ∇ in the subbundle $\xi^{\perp} \subset T(M)$,

$$
\begin{equation*}
\bar{\nabla}_{V} \psi=\nabla_{V} \psi-\frac{1}{2} \phi(V) \cdot \xi \cdot \psi, \quad V \in \Gamma\left(\xi^{\perp}\right), \quad \psi \in \Gamma(\Sigma(M)) \tag{2.9}
\end{equation*}
$$

The deformed connection $\bar{\nabla}_{V}$ has a remarkable property in that it commutes with the fundamental form Φ

$$
\bar{\nabla}_{V} \circ \Phi=\Phi \circ \bar{\nabla}_{V}
$$

For more interesting information about the connection $\bar{\nabla}_{V}$, we refer to [1]. Define first-order operators \bar{C}, \bar{Q} acting on spinor fields $\psi \in \Gamma(\Sigma(M))$ by

$$
\begin{aligned}
& \bar{C} \psi=\sum_{u=1}^{2 m} E_{u} \cdot \bar{\nabla}_{E_{u}} \psi, \\
& \bar{Q} \psi=\sum_{u=1}^{2 m} \phi\left(E_{u}\right) \cdot \bar{\nabla}_{E_{u}} \psi,
\end{aligned}
$$

where $\left(E_{1}, \ldots, E_{2 m}, \xi\right)$ is a local orthonormal frame on $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$. Both \bar{C} and \bar{Q} are self-adjoint with respect to the L^{2}-Hermitian product. But neither \bar{C} nor \bar{Q} is elliptic.

Suppose that $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ is regular, i.e., it is the total space of a circle bundle $M^{2 m+1} \longrightarrow N^{2 m}$ and the spin structure of $M^{2 m+1}$ is obtained by pull-back from $N^{2 m}$. Let D_{N} be the Dirac operator of $\left(N^{2 m}, J, g_{N}\right)$ and let \widetilde{D}_{N} be the J-twist of D_{N} defined by

$$
\widetilde{D}_{N} \varphi=\sum_{u=1}^{2 m} J\left(F_{u}\right) \cdot \nabla_{F_{u}}^{N} \varphi
$$

Then, from (2.7) we see that $\bar{\nabla}_{W^{H}}, \bar{C}, \bar{Q}$ coincide with the pull-back of ∇_{W}^{N}, D_{N}, \widetilde{D}_{N}, respectively. Inspired by this correspondence, we define a Sasakian analogue of the Kählerian twistor spinors [10].
Definition 2.1. A spinor field $\psi \in \Gamma(\Sigma(M))$ on Sasakian spin manifold ($M^{2 m+1}$, $\phi, \xi, \eta, g)$ is called a Sasakian twistor spinor of type (a, b) if

$$
\bar{\nabla}_{V} \psi=a V \cdot \bar{C} \psi+b \phi(V) \cdot \bar{Q} \psi
$$

holds for some numbers $a, b \in \mathbb{R}$ and for all vector fields $V \in \Gamma\left(\xi^{\perp}\right)$ orthogonal to ξ.
Example 2.1. Using Lemma 3.2 and Proposition 3.1 in [12], one verifies that, on a Sasakian spin manifold of dimension $2 m+1 \geq 5$, any eta-Killing spinor with Killing pair $(a, b), a \neq 0, b \neq 0$, is a Sasakian twistor spinor of type (0,0).

We shall see in the next section that, on a 3-dimensional closed Sasakian spin manifold, the existence of a Sasakian twistor spinor characterizes the limiting case of inequalities (3.4)-(3.6).

We close the section with three lemmata that we will need in the next section. To state Lemma 2.3 we use the notation (,) $=\operatorname{Re}\langle$,$\rangle denoting the real part of$ the standard Hermitian product \langle,$\rangle on the spinor bundle \Sigma(M)$ over $M^{2 m+1}$.
Lemma 2.1. On a Sasakian spin manifold $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$, the operator identity

$$
\begin{equation*}
\bar{C}^{2}=D^{2}+\nabla_{\xi} \nabla_{\xi}-\xi \circ \bar{Q}-2 \Phi \circ \nabla_{\xi}+\Phi \circ \Phi \tag{2.10}
\end{equation*}
$$

holds.
Lemma 2.2. Let $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ be a closed Sasakian spin manifold. Let $\left(E_{1}, \ldots, E_{2 m}, \xi\right)$ be a local orthonormal frame on $M^{2 m+1}$ and let $\bar{\nabla}_{E_{u}}^{*}$ denote the adjoint of $\bar{\nabla}_{E_{u}}$ with respect to the L^{2}-Hermitain product. Then we have

$$
\begin{equation*}
\sum_{u=1}^{2 m} \bar{\nabla}_{E_{u}}^{*} \bar{\nabla}_{E_{u}}=\bar{C}^{2}-\frac{1}{4} S+2 \Phi \circ \nabla_{\xi}-\Phi \circ \Phi-\frac{m}{2} . \tag{2.11}
\end{equation*}
$$

Lemma 2.3 ([13]). Let $\left(M^{2 m+1}, \phi, \xi, \eta, g\right)$ be a closed Sasakian spin manifold and let μ denote the volume form. Then, for any eigenspinor ψ of the Dirac operator D with eigenvalue λ, we have

$$
0=\int_{M^{2 m+1}}\left[2\left(\nabla_{\xi} \psi, \nabla_{\xi} \psi\right)-3\left(\nabla_{\xi} \psi, \Phi \cdot \psi\right)+2 \lambda\left(\nabla_{\xi} \psi, \xi \cdot \psi\right)\right.
$$

$$
\begin{equation*}
-\lambda(\Phi \cdot \psi, \xi \cdot \psi)+(\Phi \cdot \psi, \Phi \cdot \psi)] \mu \tag{2.12}
\end{equation*}
$$

3. Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds revisited

Let us realize the three-dimensional Clifford algebra using the matrices

$$
E_{1}=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then the relations

$$
E_{1} \cdot E_{2}=-E_{3}, \quad E_{2} \cdot E_{3}=-E_{1}, \quad E_{3} \cdot E_{1}=-E_{2}
$$

are valid. It follows that, on a 3-dimensional closed Sasakian spin manifold $\left(M^{3}, \phi, \xi, \eta, g\right)$, the operator identities

$$
\Phi=\xi, \quad \xi \cdot \bar{Q}=D-\xi \cdot \nabla_{\xi}-1
$$

hold and hence (2.10)-(2.12) simplify to

$$
\begin{equation*}
\bar{C}^{2}=D^{2}+\nabla_{\xi} \nabla_{\xi}-D-\xi \cdot \nabla_{\xi} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{u=1}^{2} \bar{\nabla}_{E_{u}}^{*} \bar{\nabla}_{E_{u}}=D^{2}-\frac{1}{4} S+\nabla_{\xi} \nabla_{\xi}-D+\xi \cdot \nabla_{\xi}+\frac{1}{2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\int_{M^{3}}\left[2\left(\nabla_{\xi} \psi, \nabla_{\xi} \psi\right)+(2 \lambda-3)\left(\nabla_{\xi} \psi, \xi \cdot \psi\right)+(1-\lambda)(\psi, \psi)\right] \mu, \tag{3.3}
\end{equation*}
$$

respectively.
Proposition 3.1. Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ be a 3-dimensional closed Sasakian spin manifold and suppose that the scalar curvature satisfies $S_{\min }>-2$. Let λ be an eigenvalue of the Dirac operator D.
(i) If $\lambda<\frac{1}{2}$, then the inequality

$$
\begin{equation*}
\lambda \leq \frac{1-\sqrt{2 S_{\min }+4}}{2} \tag{3.4}
\end{equation*}
$$

holds. The limiting case of (3.4) occurs if and only if the scalar curvature is constant and there exists an eta-Killing spinor with Killing pair $\left(\frac{-2+\sqrt{2 S+4}}{4}, \frac{4-\sqrt{2 S+4}}{4}\right)$.
(ii) If $\frac{1}{2}<\lambda \leq \frac{9}{2}$, then the inequality

$$
\begin{equation*}
\lambda \geq \frac{S_{\min }+6}{8} \tag{3.5}
\end{equation*}
$$

holds. The limiting case of (3.5) occurs if and only if the scalar curvature is constant and there exists an eta-Killing spinor with Killing pair $\left(-\frac{1}{2},-\frac{S}{8}+\frac{3}{4}\right)$.
(iii) If $\lambda \geq \frac{9}{2}$, then the inequality

$$
\begin{equation*}
\lambda \geq \frac{1+\sqrt{2 S_{\min }+4}}{2} \tag{3.6}
\end{equation*}
$$

holds. The limiting case of (3.6) occurs if and only if the scalar curvature is constant and there exists an eta-Killing spinor with Killing pair $\left(\frac{-2-\sqrt{2 S+4}}{4}, \frac{4+\sqrt{2 S+4}}{4}\right)$.

Proof. Let $\left(E_{1}, E_{2}=\phi\left(E_{1}\right), \xi\right)$ be an adapted local orthonormal frame on $\left(M^{3}, \phi, \xi, \eta, g\right)$. Let ψ be an eigenspinor of D with eigenvalue λ. Introducing free parameters $\kappa, \tau \in \mathbb{R}$ to control the unnecessary terms, we compute

$$
\begin{aligned}
H:= & \sum_{u=1}^{2} \int_{M^{3}}\left(\bar{\nabla}_{E_{u}} \psi+\frac{1}{2} E_{u} \cdot \bar{C} \psi, \bar{\nabla}_{E_{u}} \psi+\frac{1}{2} E_{u} \cdot \bar{C} \psi\right) \mu \\
& +\kappa^{2} \int_{M^{3}}\left(\nabla_{\xi} \psi-\tau \xi \cdot \psi, \nabla_{\xi} \psi-\tau \xi \cdot \psi\right) \mu \\
= & \sum_{u=1}^{2} \int_{M^{3}}\left(\bar{\nabla}_{E_{u}} \psi, \bar{\nabla}_{E_{u}} \psi\right) \mu-\frac{1}{2} \int_{M^{3}}\left(\bar{C}^{2} \psi, \psi\right) \mu \\
& \quad+\int_{M^{3}}\left[\kappa^{2}\left(\nabla_{\xi} \psi, \nabla_{\xi} \psi\right)-2 \kappa^{2} \tau\left(\nabla_{\xi} \psi, \xi \cdot \psi\right)+\kappa^{2} \tau^{2}(\psi, \psi)\right] \mu .
\end{aligned}
$$

We apply (3.1)-(3.2) to obtain

$$
\begin{aligned}
H= & \int_{M^{3}} \\
& \left(\frac{\lambda^{2}}{2}-\frac{\lambda}{2}+\frac{1}{2}-\frac{S}{4}+\kappa^{2} \tau^{2}\right)(\psi, \psi) \mu \\
& +\int_{M^{3}}\left[\left(\kappa^{2}-\frac{1}{2}\right)\left(\nabla_{\xi} \psi, \nabla_{\xi} \psi\right)-\left(2 \kappa^{2} \tau+\frac{3}{2}\right)\left(\nabla_{\xi} \psi, \xi \cdot \psi\right)\right] \mu
\end{aligned}
$$

Due to (3.3) we have

$$
\begin{align*}
H= & \int_{M^{3}}\left[\frac{\lambda^{2}}{2}-\frac{\lambda}{2}+\frac{1}{2}-\frac{S}{4}+\kappa^{2} \tau^{2}+\left(\kappa^{2}-\frac{1}{2}\right)\left(\frac{\lambda}{2}-\frac{1}{2}\right)\right](\psi, \psi) \mu \tag{3.7}\\
& -\int_{M^{3}}\left[\left(\kappa^{2}-\frac{1}{2}\right)\left(\lambda-\frac{3}{2}\right)+2 \kappa^{2} \tau+\frac{3}{2}\right]\left(\nabla_{\xi} \psi, \xi \cdot \psi\right) \mu
\end{align*}
$$

Let us now choose

$$
\kappa^{2}=\frac{2 \lambda-9}{2(2 \lambda-3+4 \tau)} \geq 0
$$

Then the latter integral of (3.7) vanishes and we obtain

$$
\begin{equation*}
H=\frac{1}{4} \int_{M^{3}}\left[2 \lambda^{2}-2 \lambda+2-S+4 \kappa^{2} \tau^{2}+\left(2 \kappa^{2}-1\right)(\lambda-1)\right](\psi, \psi) \mu \geq 0 \tag{3.8}
\end{equation*}
$$

The proof idea for Theorem 3.1 and that for Theorem 3.2 in [13] suggest us to consider the case $\tau=\frac{1}{2}$ and $\tau=1-\lambda$, respectively. In case of $\tau=\frac{1}{2}$, we have

$$
\kappa^{2}=\frac{2 \lambda-9}{2(2 \lambda-1)}
$$

and obtain

$$
H=\frac{1}{4} \int_{M^{3}}\left[2 \lambda^{2}-2 \lambda-S-\frac{3}{2}\right](\psi, \psi) \mu,
$$

which proves part (i) as well as part (iii) of the proposition. The limiting case of part (i) occurs if and only if there exists a solution to the system of equations

$$
\begin{align*}
& \bar{\nabla}_{V} \psi+\frac{1}{2} V \cdot \bar{C} \psi=0, \quad \nabla_{\xi} \psi=\frac{1}{2} \xi \cdot \psi, \quad V \in \xi^{\perp} \tag{3.9}\\
\Longleftrightarrow & \nabla_{V} \psi=-\left(\frac{\lambda}{2}+\frac{1}{4}\right) V \cdot \psi, \quad \nabla_{\xi} \psi=\frac{1}{2} \xi \cdot \psi, \quad V \in \xi^{\perp},
\end{align*}
$$

which is equivalent to the condition that the scalar curvature is constant and there exists an eta-Killing spinor with Killing pair $\left(\frac{-2+\sqrt{2 S+4}}{4}, \frac{4-\sqrt{2 S+4}}{4}\right)$. In the same way, one verifies the condition for the limiting case of part (iii). Let us now consider the other case $\tau=1-\lambda$. In that case, we have

$$
\kappa^{2}=-\frac{2 \lambda-9}{2(2 \lambda-1)}
$$

and obtain

$$
H=\frac{1}{4} \int_{M^{3}}(8 \lambda-S-6)(\psi, \psi) \mu,
$$

which proves part (ii) of the proposition. The condition for the limiting case of part (ii) is easy to check.

Remark 3.1. Any eta-Killing spinor with Killing pair $\left(-\frac{1}{2},-\frac{S}{8}+\frac{3}{4}\right)$ is a Sasakian twistor spinor of type (0,0). Any eta-Killing spinor with Killing pair $\left(\frac{-2 \pm \sqrt{2 S+4}}{4}, \frac{4 \mp \sqrt{2 S+4}}{4}\right)$ is a Sasakian twistor spinor of type $\left(-\frac{1}{2}, 0\right)$.
Remark 3.2. Suppose that $\left(M^{3}, \phi, \xi, \eta, g\right)$ is a circle bundle $\pi: M^{3} \longrightarrow N^{2}$ and admits an eta-Killing spinor ψ_{1} with Killing pair $\left(\frac{-2+\sqrt{2 S+4}}{4}, \frac{4-\sqrt{2 S+4}}{4}\right)$ as well as an eta-Killing spinor ψ_{2} with Killing pair $\left(\frac{-2-\sqrt{2 S+4}}{4}, \frac{4+\sqrt{2 S+4}}{4}\right)$. Then, due to (3.9), both ψ_{1} and ψ_{2} are projectable onto N^{2} and there exist Killing spinors φ_{1}, φ_{2} on N^{2} with $\psi_{k}=\pi^{*} \varphi_{k}, k=1,2$. The base 2-manifold N^{2} is in fact isometric to a sphere with constant scalar curvature $S+2$ (see (2.6)) and φ_{1}, φ_{2} satisfy

$$
\begin{aligned}
\nabla_{W}^{N} \varphi_{1} & =\frac{1}{4} \sqrt{2(S+2)} W \cdot \varphi_{1} \\
\nabla_{W}^{N} \varphi_{2} & =-\frac{1}{4} \sqrt{2(S+2)} W \cdot \varphi_{2}, \quad W \in \Gamma(T(N)) .
\end{aligned}
$$

Proposition 3.2. Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ be a 3 -dimensional closed Sasakian spin manifold. Then there exists an eigenspinor ψ of the Dirac operator D with eigenvalue $\lambda=\frac{1}{2}$ only if the minimum of the scalar curvature satisfies $S_{\min } \leq$ -2 .

Proof. We see from (3.1) that

$$
\begin{aligned}
& \int_{M^{3}}\left[(\bar{C} \varphi, \bar{C} \varphi)+\left(\nabla_{\xi} \varphi-\frac{1}{2} \xi \cdot \varphi, \nabla_{\xi} \varphi-\frac{1}{2} \xi \cdot \varphi\right)\right] \mu \\
= & \int_{M^{3}}\left(D \varphi-\frac{1}{2} \varphi, D \varphi-\frac{1}{2} \varphi\right) \mu
\end{aligned}
$$

holds for any spinor field φ on M^{3}. Thus, if there exists an eigenspinor ψ of D with eigenvalue $\lambda=\frac{1}{2}$, then we have

$$
\bar{C} \psi=0, \quad \nabla_{\xi} \psi=\frac{1}{2} \xi \cdot \psi
$$

and so

$$
\begin{aligned}
& \sum_{i=1}^{2} \int_{M^{3}}\left(\bar{\nabla}_{E_{i}} \psi, \bar{\nabla}_{E_{i}} \psi\right) \mu \\
= & \int_{M^{3}}\left[(\bar{C} \psi, \bar{C} \psi)-\frac{S}{4}(\psi, \psi)-2\left(\nabla_{\xi} \psi, \xi \cdot \psi\right)+\frac{1}{2}(\psi, \psi)\right] \mu \\
= & \int_{M^{3}}\left(-\frac{1}{4} S-\frac{1}{2}\right)(\psi, \psi) \mu \\
\text { which yields } \quad & S_{\min } \leq-2 .
\end{aligned}
$$

Theorem 3.1. Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ be a 3-dimensional closed Sasakian spin manifold. Then the first positive eigenvalue λ_{1}^{+}of the Dirac operator D satisfies

$$
\lambda_{1}^{+} \geq \begin{cases}\frac{S_{\min }+6}{8} & \text { for }-\frac{3}{2}<S_{\min } \leq 30 \tag{3.10}\\ \frac{1+\sqrt{2 S_{\min }+4}}{2} & \text { for } \quad S_{\min } \geq 30\end{cases}
$$

The limiting case of (3.10) occurs if and only if the scalar curvature is constant and there exists an eta-Killing spinor with Killing pair

$$
\begin{cases}\left(-\frac{1}{2},-\frac{S}{8}+\frac{3}{4}\right) & \text { for }-\frac{3}{2}<S_{\min } \leq 30, \\ \left(\frac{-2-\sqrt{2 S+4}}{4}, \frac{4+\sqrt{2 S+4}}{4}\right) & \text { for } S_{\min } \geq 30 .\end{cases}
$$

Proof. Because of the restriction $S_{\min }>-\frac{3}{2}$, it follows from Proposition 3.2 and part (i) of Proposition 3.1 that $\lambda_{1}^{+} \leq \frac{1}{2}$ is not allowed. Consequently, part (ii) and (iii) of Proposition 3.1 together give

$$
\lambda_{1}^{+} \geq \min \left\{\frac{S_{\min }+6}{8}, \frac{1+\sqrt{2 S_{\min }+4}}{2}\right\}
$$

which we can equivalently rewrite as (3.10). The condition for the limiting case of (3.10) is easy to check.

Remark 3.3. Let ($M^{3}, \phi, \xi, \eta, g$) be a simply-connected Sasakian spin manifold of dimension 3 and suppose that the scalar curvature S is constant. We proved in [8] that if $S \geq-2$, then there exists an eta-Killing spinor ψ with Killing
pair $\left(\frac{-2+\sqrt{2 S+4}}{4}, \frac{4-\sqrt{2 S+4}}{4}\right)$. In particular, if we choose $S=-\frac{3}{2}$, then ψ is a harmonic spinor. This means that our restriction $S_{\text {min }}>-\frac{3}{2}$ in Theorem 3.1 is reasonable.

Acknowledgements. This work was supported by a grant from 2010 Research Fund of Andong National University.

References

[1] I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
[3] F. A. Belgun, Normal CR structure on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441-460.
[4] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston/Basel/Berlin, 2002.
[5] Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
[6] , Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence, RI, 2000.
[7] , The second Dirac eigenvalue of a nearly parallel $G_{2}-m a n i f o l d$, Adv. Appl. Clifford Algebr. 22 (2012), no. 2, 301-311.
[8] Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172.
[9] N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg, 2009.
[10] O. Hijazi, Eigenvalues of the Dirac operator on compact Kähler manifolds, Comm. Math. Phys. 160 (1994), no. 3, 563-579.
[11] E. C. Kim, The A-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321.
[12] , Dirac eigenvalues estimates in terms of divergencefree symmetric tensors, Bull. Korean Math. Soc. 46 (2009), no. 5, 949-966.
[13] _, Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geom. Appl. 28 (2010), no. 6, 648-655.
[14] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45.
[15] A. Moroianu, Opérateur de Dirac et submersions riemanniennes, Thesis, École Polytechnique, 1996.

Department of Mathematics
College of Education
Andong National University
Andong 760-749, Korea
E-mail address: eckim@andong.ac.kr

[^0]: Received September 19, 2011.

