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THE FIRST POSITIVE EIGENVALUE OF THE DIRAC
OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

Eur CuuL Kim

ABSTRACT. Let (M3,g) be a 3-dimensional closed Sasakian spin mani-
fold. Let Smin denote the minimum of the scalar curvature of (M3, g). Let
)\IL > 0 be the first positive eigenvalue of the Dirac operator of (M3, g).
We proved in [13] that if XlF belongs to the interval )\1" € (%, g), then
)\1" satisfies )\1" > w. In this paper, we remove the restriction “if

)\1" belongs to the interval Xf S (%, %)” and prove
NN Zint6 for — 3 < Spin < 30,
1 = .
14+v/2 Smint4 \/2;‘mm+4 for  Spmin > 30.

1. Introduction

Let (M™,g) be a closed Riemannian spin manifold. The Levi-Civita con-
nection V and the Dirac operator D, acting on sections i € I'(X(M)) of the
spinor bundle (M) over M, are respectively expressed as

1 n
Vx¢ = X(¢)+ ZZEu'VXEu'Z/J
u=1
and .
Dy = Y E, Vg,
u=1

where X (1) is the directional derivative of ¢ along a vector field X € T'(T(M)),
(E1,...,E,) is a local orthonormal frame on (M", g) and the dot “” indicates
the Clifford multiplication [6]. Since (M™, g) is a closed manifold, the spectrum
Spec(D) of the Dirac operator D is discrete and real and will be written as

<A AT S0SAT <A<
where each eigenvalue except zero is repeated as many times as its multiplic-

ity. The nonzero eigenvalue A\| # 0 and A] # 0 are called the first nega-
tive eigenvalue and the first positive eigenvalue, respectively. The eigenvalue
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A1 € Spec(D) with [A1| = min{|A\[|, |]\]|} is called the first eigenvalue. A
classical result about the first Dirac eigenvalue is the Friedrich inequality

n Smin
1.1 Al > | ——
(1) R
where Spin denotes the minimum of the scalar curvature [5, 9]. (1.1) holds for
all closed Riemannian spin manifolds (M™, g) with positive scalar curvature
S > 0 and the limiting case of this inequality is characterized by the existence
of a Killing spinor 1,
Vxy =aX -, a€R.

If (M",g) is of odd dimension n, n = 3 mod4, then Spec(D) is generally
asymmetric with respect to zero [2, 11]. In that case, a problem of interest is
to find an optimal estimate for ] and that for AJ", respectively [7, 13].

A Sasakian manifold is an odd-dimensional Riemannian manifold (M?™+1

g), m > 1, equipped with a tensor field ¢ of type (1,1), a vector field £ and a
1-form 7 that satisfy

N =1 ¢*X)=-X+nX),

9(¢X, ¢Y) = g(X,Y) = n(X)n(Y),

(Vx)(Y) = g(X, Y)E = n(Y)X
for all vector fields X,Y € I'(X(M)). Over Sasakian spin manifolds, a special
class of spinors deserves attention.

Definition 1.1. A spinor field 1 on Sasakian spin manifold (M?™+1 ¢ £ 7, g)
is called an eta-Killing spinor with Killing pair (a, b) if it satisfies

Vxyp=aX -+b(X)E- ¢
for some real numbers a,b € R and for all vector fields X.

For the relations between the Killing pair (a,b) of an eta-Killing spinor and
the geometry of the Sasakian manifold, we refer to [8, 12]. It turns out in
Section 3 that the existence of an eta-Killing spinor characterizes the limiting
case of inequalities (3.4)-(3.6).

As discussed in the introduction of [13], an observation of the Dirac spectrum
of a round sphere S?™*! with Berger metric gives rise to the following two
questions:

Let (M3,6,€,1m,9) be a 3-dimensional closed Sasakian spin manifold.

(1) Does the first negative Dirac eigenvalue A\ on (M3, ¢, &, n, g) satisfies

1—v2Snin+4 3

(1.2) Al < 5 for Spin > —3 ?
(2) Does the first positive Dirac eigenvalue A{ on (M3, ¢, £, 1, g) satisfies
Smip t6 for —2 < Spin < 30
+ min = b}
(13) )\1 Z { 14+ 8/2 gmin“rﬁl fOI' Smin > 30 ?
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Note that both (1.2) and (1.3) improve Friedrich’s inequality (1.1). We proved
in [13] that the answer to the first question is positive. But as to the second
question, we gave only a partial answer (see Theorem 3.2 in [13]):

If the first positive Dirac eigenvalue A belongs to the interval \f € (%, 3)7
then A\ satisfies \| > —Smi§+6_

The aim of this paper is to give a complete answer to the second question,
removing the uncomfortable restriction “if A belongs to the interval A\ €
(%, %)”. Namely, we will prove Theorem 3.1. When comparing (3.10) with
(1.3), there is a slight change in the scalar curvature restriction from —2 <
Smin < 30 to —% < Shin < 30. It is pointed out in Remark 3.3 that the latter

restriction is more reasonable.

2. A natural deformation of the Levi-Civita connection

To prove Proposition 3.1 in the next section, we will apply a deformation
technique for spin connections. In the former part of this section we briefly
review some general properties of regular Sasakian manifolds [3, 4, 14, 15],
which help clarify the geometric implication of our deformation of the Levi-
Civita connection (see (2.9)).

A Sasakian manifold (M?™*L ¢ & n,g) is called regular if every point of
M?m+1 has a neighbourhood through which any integral curve of the unit
vector field £ passes at most once. In that case, all the orbits of £ have the
same period and M?™*! turns out to be the total space of a principal S!'-bundle
7w M2t — N2m. Regarding the contact form 7 as a U(1)-connection form
v/—1n with values in v/—1 R, we can realize a closed 2-form representing the first
Chern class of the principal S-bundle 7 : M?m+l — N2™ as the curvature
form
1[w¢m € H*(N*™, 7).

1 (M2m+1 — N2m) — __ﬂ-

The Sasakian structure (¢,&,7,g) on the total space M?™*! then induces a
Kibhler structure (J,gn) on the base manifold N?™ via the relations

(2.1) meop = Jom,,

(2.2) g = mgn+tnemn.

As a consequence of (2.1)-(2.2), the fundamental form ® = 1dn on the total
space (M?™+L ¢ €. n,g) coincides with the pull-back ® =7*Q of the fundamen-
tal form Q associated to (N?™,J, gn). Let (F1,. .., Fby) be alocal orthonormal
fame on (N?™,.J gy) and consider its horizontal lift (F{,... Fi ¢). Pro-

ceeding as in Example 6.1 of [8], we find that the Levi-Civita connection V of
(M?m+L ¢, & n, g) is related to that VIV of (N?™,J, gn) by

(2.3) Ven F = (VN F)" = Qu ¢,
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where Qy,, := Q(Fy, F,) = gy (Fy, J(F,)). Moreover, it holds that
(2.4) Vi€ = VR = —¢(Fl).

The Ricci tensor Ric and scalar curvature S of (M2™+1 ¢ ¢ n, g) are related
to those Ricy, Sx of (N?™,J,gn) by

(2.5) Ric(W{, W) = Ricy (W1, Wa) — 295 (W1, Ws), Wi, Wy € T(T(N)),
and
(2.6) S = Sy —2m,

respectively. Let us assume that (N?™, J, gx) is a spin manifold and (M?m+1,
®,€,m,g) is equipped with a spin structure obtained by pull-back from (N?™, .J,
gn). Let ¢ be a spinor field on N?™ and o be its horizontal lift. Then
the spinor derivative Vo on (M?™+1 ¢ & n,g) is related to that VV¢ on
(NQmaJagN) by

(27)  Twne! = (Vie)" +S6WH) £, W e TI(V),
1

(2.8) Vept = 5@ o

A spinor field v on M?™*! is projectable onto N?™, i.e., there exists some
spinor field ¢ on N?™ with 1) = ¢ if the directional derivative £(¢)) vanishes
identically. From (2.4), it follows that ¢ € I'(3(M)) is projectable if and only
if Ve = 30 -9 .

Let (M?™+L ¢ €, n,g) be a (possibly irregular) Sasakian spin manifold. Let
&+ denote the orthogonal complement of the vector field £ in the tangent bundle
T(M). We deform the Levi-Civita connection V in the subbundle ¢+ C T'(M),

(29)  Tvy = Vv go(V)-Ep,  VeET(E), weTE(O)

The deformed connection Vy has a remarkable property in that it commutes
with the fundamental form ®
VV od = do vv.

For more interesting information about the connection Vv, we refer to [1].
Define first-order operators C, Q acting on spinor fields ¢ € T'(3(M)) by

2m
6¢ = ZEu 'vEuwa
u=1

2m
QY=Y 6(Ew) Vi,
u=1

where (E1,..., Eap,§) is a local orthonormal frame on (M2 ¢, € n, ).
Both C and @ are self-adjoint with respect to the L?-Hermitian product. But
neither C nor @ is elliptic.
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Suppose that (M?m+L1 ¢ € n,g) is regular, i.e., it is the total space of a
circle bundle M?2?m+1 — N2?™ and the spin structure of M?™*! is obtained
by pull-back from N?™. Let Dy be the Dirac operator of (N?™,J, gn) and let
EN be the J-twist of Dy defined by

2m
Dyp = Y J(F.)-Vie.
u=1

Theanrom (2.7) we see that Vyyu, C, Q coincide with the pull-back of Vi,

Dy, Dy, respectively. Inspired by this correspondence, we define a Sasakian
analogue of the Kahlerian twistor spinors [10].

Definition 2.1. A spinor field 1) € ['(3(M)) on Sasakian spin manifold (M 2™+
®,&,1,9) is called a Sasakian twistor spinor of type (a,b) if

Vv = aV-Cp +bp(V) - Qy
holds for some numbers a,b € R and for all vector fields V € T'(§1) orthogonal
to &.

Example 2.1. Using Lemma 3.2 and Proposition 3.1 in [12], one verifies that,
on a Sasakian spin manifold of dimension 2m + 1 > 5, any eta-Killing spinor
with Killing pair (a,b), a # 0,b # 0, is a Sasakian twistor spinor of type (0, 0).

We shall see in the next section that, on a 3-dimensional closed Sasakian spin
manifold, the existence of a Sasakian twistor spinor characterizes the limiting
case of inequalities (3.4)-(3.6).

We close the section with three lemmata that we will need in the next section.
To state Lemma 2.3 we use the notation (, ) = Re(, ) denoting the real part of
the standard Hermitian product (, ) on the spinor bundle X(M) over M2+,

Lemma 2.1. On a Sasakian spin manifold (M?™t ¢, & n,g), the operator
identity
2

(2.10) C™ = D*+VeVe—€0Q—200V,+P0d
holds.
Lemma 2.2. Let (M?*™H ¢.€,n,9) be a closed Sasakian spin manifold. Let
(E1,...,Em, &) be a local orthonormal frame on M*™*t and let V*Eu denote
the adjoint of Vg, with respect to the L?-Hermitain product. Then we have
2m

=% = —=2 1 m

(2.11) ;vEquu = 0~ {S+200Vc—Pod— o

Lemma 2.3 ([13]). Let (M*™1 ¢, & n,g) be a closed Sasakian spin manifold
and let p denote the volume form. Then, for any eigenspinor ¥ of the Dirac
operator D with eigenvalue A\, we have

0 = /MM+1 {2(V5¢, Veh) — 3(Veth, ® - 4p) + 2\(Vea, € - 1)
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(212) “A@ Y, E- ) + (D4, )|

3. Estimates of small Dirac eigenvalues on 3-dimensional Sasakian
manifolds revisited

Let us realize the three-dimensional Clifford algebra using the matrices

() a5 ) w0 )

Then the relations
E, - By = —Es, Ey-FE3 = —F, Es-E =—E,

are valid. It follows that, on a 3-dimensional closed Sasakian spin manifold
(M3,¢,¢,m,9), the operator identities

=&  £Q=D-€ V-1

hold and hence (2.10)-(2.12) simplify to
2

(3.1) C™ = D*+VeVe—D—£-V¢
and
2 1 1
(3.2) > VieVe, D?~ 28+ VeVe =D +€- Vet 5
u=1

and
33) 0= [ [29e0. Vev) + (2A=3)(Ver € 0)+ (1= N )]
respectively.

Proposition 3.1. Let (M3, ¢,£&,1,9) be a 3-dimensional closed Sasakian spin
manifold and suppose that the scalar curvature satisfies Spyin > —2. Let X be
an eigenvalue of the Dirac operator D.
(i) If A < %, then the inequality
1-—- V 2 Smin + 4
2

holds. The limiting case of (3.4) occurs if and only if the scalar curvature is con-
stant and there exists an eta-Killing spinor with Killing pair (@@)
(i) If% <A< %, then the inequality
Smin + 6
8
holds. The limiting case of (3.5) occurs if and only if the scalar curvature is

constant and there exists an eta-Killing spinor with Killing pair (—%, —% + %)
(iii) If A > %, then the inequality

1+\/25min+4
2

(3.4) A<

(3.5) A >

(3.6) A >
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holds. The limiting case of (3.6) occurs if and only if the scalar curvature is con-
stant and there exists an eta-Killing spinor with Killing pair (’2’7 Ve RLROS RS VfSH)

Proof. Let (E1, Ea = ¢(E1), &) be an adapted local orthonormal frame on

(M3,¢,€,m,9). Let 1 be an eigenspinor of D with eigenvalue A. Introducing
free parameters K, 7 € R to control the unnecessary terms, we compute

2
— 1 - = 1 —
H = Z /MS (VEJ/J + §Eu -CY, Ve, ¥+ §Eu ) Cw) H

[ (Tew = r€ b Ve - re )

2 B _ . L,
= 3 (Tew e [ (@

1/ M3

+/Ms [2(Vety, V) = 26°7(Verh, £ 9) + K272 (1h, ¥)]

We apply (3.1)-(3.2) to obtain

oA 1S,
H = /Ms<7§+§z+’17)(1/%1/))#

+/W Kﬁ - %) (Vew, Ver) - <2n = 3) (Veu, € w)}

Due to (3.3) we have

Mox 18 N /x 1
= Mg[?_§+§_1+“7+( ‘5)(5‘5)}%@“

(O [

Let us now choose

(3.7)

9 220-9
K= —————
22\ =3 +441) —
Then the latter integral of (3.7) vanishes and we obtain
(3.8)
1
H = 1/ [2A% —2XA+2 = S+ 4k + (26 = 1)(A = 1)] (¥, ¥)p
M3

The proof idea for Theorem 3.1 and that for Theorem 3.2 in [13] suggest us to
consider the case 7 = 1 and 7 =1 — ), respectively. In case of 7 = 1

2 2
,  2A-09

220 —1)

we have
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and obtain
1 3
H= —/ [2A2—2A—S——] (W, ),
4 M3 2
which proves part (i) as well as part (iii) of the proposition. The limiting case
of part (i) occurs if and only if there exists a solution to the system of equations

(39) Vg3V Tp=0,  Ver=z6w, Veg
A1 1 N
— VV7/)<§+Z)V'¢, Ve =589, Ve,

which is equivalent to the condition that the scalar curvature is constant and
—24/25+4 4—\/234-4)
1 ’ 1

.In

there exists an eta-Killing spinor with Killing pair (

the same way, one verifies the condition for the limiting case of part (iii). Let
us now consider the other case 7 =1 — A. In that case, we have

9 20 —9
220 1)
and obtain

1
m=1 [ B =s-0w. o

which proves part (ii) of the proposition. The condition for the limiting case

of part (ii) is easy to check. O

Remark 3.1. Any eta-Killing spinor with Killing pair (f%, — g + %) is a Sasaki-

an twistor spinor of type (0,0). Any eta-Killing spinor with Killing pair

<—2i\/2s+4 4F/25+4
1 ; 1

) is a Sasakian twistor spinor of type (—3,0).

Remark 3.2. Suppose that (M3,¢,€&,1,g) is a circle bundle 7 : M3 — N?
—2425%4 4—/35¥14
1 , 1

and admits an eta-Killing spinor ; with Killing pair (
—2—/25+4 4+\/zs+4)
1 ’ 1 :

as well as an eta-Killing spinor %, with Killing pair (
Then, due to (3.9), both v and vy are projectable onto N? and there exist
Killing spinors @1, @2 on N? with 1, = 7*px, k = 1,2. The base 2-manifold
N? is in fact isometric to a sphere with constant scalar curvature S + 2 (see
(2.6)) and @1, @ satisfy

1
Viver = Z\/Q(SJFQ)W'%

1
Vigs = 71\/2(S+2)W~¢2, W € T(T(N)).

Proposition 3.2. Let (M3, ¢,¢,1,g) be a 3-dimensional closed Sasakian spin
manifold. Then there exists an eigenspinor 1 of the Dirac operator D with

eigenvalue A = % only if the minimum of the scalar curvature satisfies Spin <
—2.



THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR 439

Proof. We see from (3.1) that

S 1 1
/M3 [(C% Co) + <V§<P - 55 i, Vep — 55 : 50)} M

1 1
= Dy — =, Do — -
/M< v = 3% Dy Qw)u

holds for any spinor field ¢ on M?3. Thus, if there exists an eigenspinor v of D
with eigenvalue A = %, then we have

Ty=0,  Veb=36u

and so

2
;/Ms (Ve, Ve 1

(©0, To) ~ 2 () — ATt & - 9) + 50|

—

M3

1
—25—2) W
(35 -3) o
which yields Shpin < —2. O

—

Theorem 3.1. Let (M3,¢$,£,m,9) be a 3-dimensional closed Sasakian spin
manifold. Then the first positive eigenvalue \| of the Dirac operator D satisfies

Smin+6 for —3 < Spin <30
Jr 2 min = b
Al > {

3.10 o —
( ) 142 Simin+4 2§m“‘+4 for  Smin > 30.

The limiting case of (3.10) occurs if and only if the scalar curvature is constant
and there exists an eta-Killing spinor with Killing pair

(7%77%4,%) fOT *%<Smin§305
(7274m’ 4+\/25ﬁ) for  Smin 2> 30.

Proof. Because of the restriction Sy, > — , it follows from Proposition 3.2
and part (i) of Proposition 3.1 that A\] < 1 5 is not allowed. Consequently, part
(ii) and (iii) of Proposition 3.1 together give

+ . Smin+6 1+\/2Sm1n+4

Al > min ,
8 2

which we can equivalently rewrite as (3.10). The condition for the limiting case

of (3.10) is easy to check. O

3

Remark 3.3. Let (M3, ¢,€,1,g) be a simply-connected Sasakian spin manifold
of dimension 3 and suppose that the scalar curvature S is constant. We proved
n [8] that if S > —2, then there exists an eta-Killing spinor ¢ with Killing
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pair (
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=2+ V425+4, 4_Vis+4). In particular, if we choose S = fg’, then 1 is a

harmonic spinor. This means that our restriction Sy, > —% in Theorem 3.1
is reasonable.
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