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THE FIRST POSITIVE EIGENVALUE OF THE DIRAC

OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

Eui Chul Kim

Abstract. Let (M3, g) be a 3-dimensional closed Sasakian spin mani-
fold. Let Smin denote the minimum of the scalar curvature of (M3, g). Let

λ+
1 > 0 be the first positive eigenvalue of the Dirac operator of (M3, g).

We proved in [13] that if λ+
1 belongs to the interval λ+

1 ∈
(

1
2
, 5
2

)

, then

λ+
1 satisfies λ+

1 ≥ Smin+6

8
. In this paper, we remove the restriction “if

λ+
1 belongs to the interval λ+

1 ∈ ( 1
2
, 5
2
)” and prove

λ+
1 ≥

{

Smin+6

8
for − 3

2
< Smin ≤ 30,

1+
√

2Smin+4

2
for Smin ≥ 30.

1. Introduction

Let (Mn, g) be a closed Riemannian spin manifold. The Levi-Civita con-
nection ∇ and the Dirac operator D, acting on sections ψ ∈ Γ(Σ(M)) of the
spinor bundle Σ(M) over Mn, are respectively expressed as

∇Xψ = X(ψ) +
1

4

n∑

u=1

Eu · ∇XEu · ψ

and

Dψ =
n∑

u=1

Eu · ∇Eu
ψ,

where X(ψ) is the directional derivative of ψ along a vector field X ∈ Γ(T (M)),
(E1, . . . , En) is a local orthonormal frame on (Mn, g) and the dot “·” indicates
the Clifford multiplication [6]. Since (Mn, g) is a closed manifold, the spectrum
Spec(D) of the Dirac operator D is discrete and real and will be written as

· · · ≤ λ−2 ≤ λ−1 ≤ 0 ≤ λ+1 ≤ λ+2 ≤ · · · ,
where each eigenvalue except zero is repeated as many times as its multiplic-
ity. The nonzero eigenvalue λ−1 6= 0 and λ+1 6= 0 are called the first nega-

tive eigenvalue and the first positive eigenvalue, respectively. The eigenvalue
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λ1 ∈ Spec(D) with |λ1| = min{|λ−1 |, |λ+1 |} is called the first eigenvalue. A
classical result about the first Dirac eigenvalue is the Friedrich inequality

(1.1) |λ1| ≥
√

nSmin

4(n− 1)
,

where Smin denotes the minimum of the scalar curvature [5, 9]. (1.1) holds for
all closed Riemannian spin manifolds (Mn, g) with positive scalar curvature
S > 0 and the limiting case of this inequality is characterized by the existence
of a Killing spinor ψ,

∇Xψ = aX · ψ, a ∈ R.

If (Mn, g) is of odd dimension n, n ≡ 3 mod 4, then Spec(D) is generally
asymmetric with respect to zero [2, 11]. In that case, a problem of interest is
to find an optimal estimate for λ−1 and that for λ+1 , respectively [7, 13].

A Sasakian manifold is an odd-dimensional Riemannian manifold (M2m+1,
g), m ≥ 1, equipped with a tensor field φ of type (1, 1), a vector field ξ and a
1-form η that satisfy

η(ξ) = 1, φ2(X) = −X + η(X)ξ,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X

for all vector fields X,Y ∈ Γ(Σ(M)). Over Sasakian spin manifolds, a special
class of spinors deserves attention.

Definition 1.1. A spinor field ψ on Sasakian spin manifold (M2m+1, φ, ξ, η, g)
is called an eta-Killing spinor with Killing pair (a, b) if it satisfies

∇Xψ = aX · ψ + bη(X)ξ · ψ
for some real numbers a, b ∈ R and for all vector fields X .

For the relations between the Killing pair (a, b) of an eta-Killing spinor and
the geometry of the Sasakian manifold, we refer to [8, 12]. It turns out in
Section 3 that the existence of an eta-Killing spinor characterizes the limiting
case of inequalities (3.4)-(3.6).

As discussed in the introduction of [13], an observation of the Dirac spectrum
of a round sphere S2m+1 with Berger metric gives rise to the following two
questions:

Let (M3, φ, ξ, η, g) be a 3-dimensional closed Sasakian spin manifold.
(1) Does the first negative Dirac eigenvalue λ−1 on (M3, φ, ξ, η, g) satisfies

(1.2) λ−1 ≤ 1−
√
2Smin + 4

2
for Smin > −3

2
?

(2) Does the first positive Dirac eigenvalue λ+1 on (M3, φ, ξ, η, g) satisfies

(1.3) λ+1 ≥
{ Smin+6

8
for − 2 < Smin ≤ 30,

1+
√
2Smin+4

2
for Smin ≥ 30 ?
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Note that both (1.2) and (1.3) improve Friedrich’s inequality (1.1). We proved
in [13] that the answer to the first question is positive. But as to the second
question, we gave only a partial answer (see Theorem 3.2 in [13]):

If the first positive Dirac eigenvalue λ+1 belongs to the interval λ+1 ∈ (1
2
, 5
2
),

then λ+1 satisfies λ+1 ≥ Smin+6

8
.

The aim of this paper is to give a complete answer to the second question,
removing the uncomfortable restriction “if λ+1 belongs to the interval λ+1 ∈
(1
2
, 5

2
)”. Namely, we will prove Theorem 3.1. When comparing (3.10) with

(1.3), there is a slight change in the scalar curvature restriction from −2 <

Smin ≤ 30 to − 3

2
< Smin ≤ 30. It is pointed out in Remark 3.3 that the latter

restriction is more reasonable.

2. A natural deformation of the Levi-Civita connection

To prove Proposition 3.1 in the next section, we will apply a deformation
technique for spin connections. In the former part of this section we briefly
review some general properties of regular Sasakian manifolds [3, 4, 14, 15],
which help clarify the geometric implication of our deformation of the Levi-
Civita connection (see (2.9)).

A Sasakian manifold (M2m+1, φ, ξ, η, g) is called regular if every point of
M2m+1 has a neighbourhood through which any integral curve of the unit
vector field ξ passes at most once. In that case, all the orbits of ξ have the
same period andM2m+1 turns out to be the total space of a principal S1-bundle
π :M2m+1 −→ N2m. Regarding the contact form η as a U(1)-connection form√
−1η with values in

√
−1R, we can realize a closed 2-form representing the first

Chern class of the principal S1-bundle π : M2m+1 −→ N2m as the curvature
form

c1
(
M2m+1 −→ N2m

)
= − 1

2π
[π∗dη ] ∈ H2(N2m;Z).

The Sasakian structure (φ, ξ, η, g) on the total space M2m+1 then induces a
Kähler structure (J, gN ) on the base manifold N2m via the relations

π∗ ◦ φ = J ◦ π∗,(2.1)

g = π∗gN + η ⊗ η.(2.2)

As a consequence of (2.1)-(2.2), the fundamental form Φ = 1

2
dη on the total

space (M2m+1, φ, ξ, η, g) coincides with the pull-back Φ=π∗Ω of the fundamen-
tal form Ω associated to (N2m, J, gN). Let (F1, . . . , F2m) be a local orthonormal
fame on (N2m, J, gN) and consider its horizontal lift (FH

1 , . . . , FH
2m, ξ). Pro-

ceeding as in Example 6.1 of [8], we find that the Levi-Civita connection ∇ of
(M2m+1, φ, ξ, η, g) is related to that ∇N of (N2m, J, gN ) by

(2.3) ∇FH
u
FH
v =

(
∇N

Fu
Fv

)H − Ωuv ξ,
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where Ωuv := Ω(Fu, Fv) = gN (Fu, J(Fv)). Moreover, it holds that

(2.4) ∇FH
v
ξ = ∇ξF

H
v = −φ(FH

v ).

The Ricci tensor Ric and scalar curvature S of (M2m+1, φ, ξ, η, g) are related
to those RicN , SN of (N2m, J, gN) by

(2.5) Ric(WH
1 ,WH

2 ) = RicN (W1,W2)− 2gN(W1,W2), W1,W2 ∈ Γ(T (N)),

and

(2.6) S = SN − 2m,

respectively. Let us assume that (N2m, J, gN) is a spin manifold and (M2m+1,

φ, ξ, η, g) is equipped with a spin structure obtained by pull-back from (N2m, J ,
gN). Let ϕ be a spinor field on N2m and ϕH be its horizontal lift. Then
the spinor derivative ∇ϕH on (M2m+1, φ, ξ, η, g) is related to that ∇Nϕ on
(N2m, J, gN) by

∇WHϕH =
(
∇N

Wϕ
)H

+
1

2
φ(WH) · ξ · ϕH , W ∈ Γ(T (N)),(2.7)

∇ξϕ
H =

1

2
Φ · ϕH .(2.8)

A spinor field ψ on M2m+1 is projectable onto N2m, i.e., there exists some
spinor field ϕ on N2m with ψ = ϕH if the directional derivative ξ(ψ) vanishes
identically. From (2.4), it follows that ψ ∈ Γ(Σ(M)) is projectable if and only
if ∇ξψ = 1

2
Φ · ψ .

Let (M2m+1, φ, ξ, η, g) be a (possibly irregular) Sasakian spin manifold. Let
ξ⊥ denote the orthogonal complement of the vector field ξ in the tangent bundle
T (M). We deform the Levi-Civita connection ∇ in the subbundle ξ⊥ ⊂ T (M),

(2.9) ∇V ψ = ∇V ψ − 1

2
φ(V ) · ξ · ψ, V ∈ Γ(ξ⊥), ψ ∈ Γ(Σ(M)).

The deformed connection ∇V has a remarkable property in that it commutes
with the fundamental form Φ

∇V ◦ Φ = Φ ◦ ∇V .

For more interesting information about the connection ∇V , we refer to [1].
Define first-order operators C, Q acting on spinor fields ψ ∈ Γ(Σ(M)) by

Cψ =

2m∑

u=1

Eu · ∇Eu
ψ,

Qψ =

2m∑

u=1

φ(Eu) · ∇Eu
ψ,

where (E1, . . . , E2m, ξ) is a local orthonormal frame on (M2m+1, φ, ξ, η, g).
Both C and Q are self-adjoint with respect to the L2-Hermitian product. But
neither C nor Q is elliptic.
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Suppose that (M2m+1, φ, ξ, η, g) is regular, i.e., it is the total space of a
circle bundle M2m+1 −→ N2m and the spin structure of M2m+1 is obtained
by pull-back from N2m. Let DN be the Dirac operator of (N2m, J, gN) and let

D̃N be the J-twist of DN defined by

D̃Nϕ =

2m∑

u=1

J(Fu) · ∇N
Fu
ϕ.

Then, from (2.7) we see that ∇WH , C, Q coincide with the pull-back of ∇N
W ,

DN , D̃N , respectively. Inspired by this correspondence, we define a Sasakian
analogue of the Kählerian twistor spinors [10].

Definition 2.1. A spinor field ψ∈Γ(Σ(M)) on Sasakian spin manifold (M2m+1,

φ, ξ, η, g) is called a Sasakian twistor spinor of type (a, b) if

∇V ψ = aV · Cψ + bφ(V ) ·Qψ
holds for some numbers a, b ∈ R and for all vector fields V ∈ Γ(ξ⊥) orthogonal
to ξ.

Example 2.1. Using Lemma 3.2 and Proposition 3.1 in [12], one verifies that,
on a Sasakian spin manifold of dimension 2m + 1 ≥ 5, any eta-Killing spinor
with Killing pair (a, b), a 6= 0, b 6= 0, is a Sasakian twistor spinor of type (0, 0).

We shall see in the next section that, on a 3-dimensional closed Sasakian spin
manifold, the existence of a Sasakian twistor spinor characterizes the limiting
case of inequalities (3.4)-(3.6).

We close the section with three lemmata that we will need in the next section.
To state Lemma 2.3 we use the notation ( , ) = Re〈 , 〉 denoting the real part of
the standard Hermitian product 〈 , 〉 on the spinor bundle Σ(M) over M2m+1.

Lemma 2.1. On a Sasakian spin manifold (M2m+1, φ, ξ, η, g), the operator

identity

(2.10) C
2

= D2 +∇ξ∇ξ − ξ ◦Q − 2Φ ◦ ∇ξ +Φ ◦ Φ
holds.

Lemma 2.2. Let (M2m+1, φ, ξ, η, g) be a closed Sasakian spin manifold. Let

(E1, . . . , E2m, ξ) be a local orthonormal frame on M2m+1 and let ∇∗
Eu

denote

the adjoint of ∇Eu
with respect to the L2-Hermitain product. Then we have

(2.11)

2m∑

u=1

∇∗
Eu

∇Eu
= C

2 − 1

4
S + 2Φ ◦ ∇ξ − Φ ◦ Φ− m

2
.

Lemma 2.3 ([13]). Let (M2m+1, φ, ξ, η, g) be a closed Sasakian spin manifold

and let µ denote the volume form. Then, for any eigenspinor ψ of the Dirac

operator D with eigenvalue λ, we have

0 =

∫

M2m+1

[
2(∇ξψ, ∇ξψ)− 3(∇ξψ, Φ · ψ) + 2λ(∇ξψ, ξ · ψ)
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−λ(Φ · ψ, ξ · ψ) + (Φ · ψ, Φ · ψ)
]
µ.(2.12)

3. Estimates of small Dirac eigenvalues on 3-dimensional Sasakian

manifolds revisited

Let us realize the three-dimensional Clifford algebra using the matrices

E1 =

(√
−1 0
0 −

√
−1

)
, E2 =

(
0

√
−1√

−1 0

)
, E3 =

(
0 1
−1 0

)
.

Then the relations

E1 · E2 = −E3, E2 ·E3 = −E1, E3 ·E1 = −E2

are valid. It follows that, on a 3-dimensional closed Sasakian spin manifold
(M3, φ, ξ, η, g), the operator identities

Φ = ξ, ξ ·Q = D − ξ · ∇ξ − 1

hold and hence (2.10)-(2.12) simplify to

(3.1) C
2

= D2 +∇ξ∇ξ −D − ξ · ∇ξ

and

(3.2)
2∑

u=1

∇ ∗
Eu

∇Eu
= D2 − 1

4
S +∇ξ∇ξ −D + ξ · ∇ξ +

1

2

and

(3.3) 0 =

∫

M3

[
2(∇ξψ, ∇ξψ) + (2λ− 3)(∇ξψ, ξ · ψ) + (1− λ)(ψ, ψ)

]
µ,

respectively.

Proposition 3.1. Let (M3, φ, ξ, η, g) be a 3-dimensional closed Sasakian spin

manifold and suppose that the scalar curvature satisfies Smin > −2. Let λ be

an eigenvalue of the Dirac operator D.

(i) If λ < 1

2
, then the inequality

(3.4) λ ≤ 1−
√
2Smin + 4

2

holds. The limiting case of (3.4) occurs if and only if the scalar curvature is con-

stant and there exists an eta-Killing spinor with Killing pair
(−2 +

√
2S + 4

4
,
4−

√
2S + 4

4

)
.

(ii) If 1

2
< λ ≤ 9

2
, then the inequality

(3.5) λ ≥ Smin + 6

8

holds. The limiting case of (3.5) occurs if and only if the scalar curvature is

constant and there exists an eta-Killing spinor with Killing pair
(
− 1

2
,−S

8
+ 3

4

)
.

(iii) If λ ≥ 9

2
, then the inequality

(3.6) λ ≥ 1 +
√
2Smin + 4

2



THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR 437

holds. The limiting case of (3.6) occurs if and only if the scalar curvature is con-

stant and there exists an eta-Killing spinor with Killing pair
(−2−

√
2S + 4

4
,
4 +

√
2S + 4

4

)
.

Proof. Let (E1, E2 = φ(E1), ξ) be an adapted local orthonormal frame on
(M3, φ, ξ, η, g). Let ψ be an eigenspinor of D with eigenvalue λ. Introducing
free parameters κ, τ ∈ R to control the unnecessary terms, we compute

H :=

2∑

u=1

∫

M3

(
∇Eu

ψ +
1

2
Eu · Cψ, ∇Eu

ψ +
1

2
Eu · Cψ

)
µ

+ κ2
∫

M3

(∇ξψ − τξ · ψ, ∇ξψ − τξ · ψ)µ

=

2∑

u=1

∫

M3

(∇Eu
ψ, ∇Eu

ψ)µ− 1

2

∫

M3

(C
2
ψ, ψ)µ

+

∫

M3

[
κ2(∇ξψ, ∇ξψ)− 2κ2τ(∇ξψ, ξ · ψ) + κ2τ2(ψ, ψ)

]
µ.

We apply (3.1)-(3.2) to obtain

H =

∫

M3

(
λ2

2
− λ

2
+

1

2
− S

4
+ κ2τ2

)
(ψ, ψ)µ

+

∫

M3

[(
κ2 − 1

2

)
(∇ξψ, ∇ξψ)−

(
2κ2τ +

3

2

)
(∇ξψ, ξ · ψ)

]
µ.

Due to (3.3) we have

(3.7)

H =

∫

M3

[
λ2

2
− λ

2
+

1

2
− S

4
+ κ2τ2 +

(
κ2 − 1

2

)(
λ

2
− 1

2

)]
(ψ, ψ)µ

−
∫

M3

[(
κ2 − 1

2

)(
λ− 3

2

)
+ 2κ2τ +

3

2

]
(∇ξψ, ξ · ψ)µ.

Let us now choose

κ2 =
2λ− 9

2(2λ− 3 + 4τ)
≥ 0.

Then the latter integral of (3.7) vanishes and we obtain
(3.8)

H =
1

4

∫

M3

[
2λ2 − 2λ+ 2− S + 4κ2τ2 + (2κ2 − 1)(λ− 1)

]
(ψ, ψ)µ ≥ 0.

The proof idea for Theorem 3.1 and that for Theorem 3.2 in [13] suggest us to
consider the case τ = 1

2
and τ = 1− λ, respectively. In case of τ = 1

2
, we have

κ2 =
2λ− 9

2(2λ− 1)
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and obtain

H =
1

4

∫

M3

[
2λ2 − 2λ− S − 3

2

]
(ψ, ψ)µ,

which proves part (i) as well as part (iii) of the proposition. The limiting case
of part (i) occurs if and only if there exists a solution to the system of equations

∇V ψ +
1

2
V · Cψ = 0, ∇ξψ =

1

2
ξ · ψ, V ∈ ξ⊥(3.9)

⇐⇒ ∇V ψ = −
(
λ

2
+

1

4

)
V · ψ, ∇ξψ =

1

2
ξ · ψ, V ∈ ξ⊥,

which is equivalent to the condition that the scalar curvature is constant and

there exists an eta-Killing spinor with Killing pair
(

−2+
√
2S+4

4
, 4−

√
2S+4

4

)
. In

the same way, one verifies the condition for the limiting case of part (iii). Let
us now consider the other case τ = 1− λ. In that case, we have

κ2 = − 2λ− 9

2(2λ− 1)

and obtain

H =
1

4

∫

M3

(8λ− S − 6) (ψ, ψ)µ,

which proves part (ii) of the proposition. The condition for the limiting case
of part (ii) is easy to check. �

Remark 3.1. Any eta-Killing spinor with Killing pair
(
− 1

2
,−S

8
+ 3

4

)
is a Sasaki-

an twistor spinor of type (0, 0). Any eta-Killing spinor with Killing pair(
−2±

√
2S+4

4
, 4∓

√
2S+4

4

)
is a Sasakian twistor spinor of type (− 1

2
, 0).

Remark 3.2. Suppose that (M3, φ, ξ, η, g) is a circle bundle π : M3 −→ N2

and admits an eta-Killing spinor ψ1 with Killing pair
(

−2+
√
2S+4

4
, 4−

√
2S+4

4

)

as well as an eta-Killing spinor ψ2 with Killing pair
(

−2−
√
2S+4

4
, 4+

√
2S+4

4

)
.

Then, due to (3.9), both ψ1 and ψ2 are projectable onto N2 and there exist
Killing spinors ϕ1, ϕ2 on N2 with ψk = π∗ϕk, k = 1, 2. The base 2-manifold
N2 is in fact isometric to a sphere with constant scalar curvature S + 2 (see
(2.6)) and ϕ1, ϕ2 satisfy

∇N
Wϕ1 =

1

4

√
2(S + 2)W · ϕ1

∇N
Wϕ2 = − 1

4

√
2(S + 2)W · ϕ2, W ∈ Γ(T (N)).

Proposition 3.2. Let (M3, φ, ξ, η, g) be a 3-dimensional closed Sasakian spin

manifold. Then there exists an eigenspinor ψ of the Dirac operator D with

eigenvalue λ = 1

2
only if the minimum of the scalar curvature satisfies Smin ≤

−2.
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Proof. We see from (3.1) that
∫

M3

[(
Cϕ, Cϕ

)
+

(
∇ξϕ− 1

2
ξ · ϕ, ∇ξϕ− 1

2
ξ · ϕ

)]
µ

=

∫

M3

(
Dϕ− 1

2
ϕ, Dϕ− 1

2
ϕ

)
µ

holds for any spinor field ϕ on M3. Thus, if there exists an eigenspinor ψ of D
with eigenvalue λ = 1

2
, then we have

Cψ = 0, ∇ξψ =
1

2
ξ · ψ

and so
2∑

i=1

∫

M3

(
∇Ei

ψ, ∇Ei
ψ
)
µ

=

∫

M3

[(
Cψ, Cψ

)
− S

4
(ψ, ψ)− 2(∇ξψ, ξ · ψ) +

1

2
(ψ, ψ)

]
µ

=

∫

M3

(
−1

4
S − 1

2

)
(ψ, ψ)µ,

which yields Smin ≤ −2. �

Theorem 3.1. Let (M3, φ, ξ, η, g) be a 3-dimensional closed Sasakian spin

manifold. Then the first positive eigenvalue λ+1 of the Dirac operator D satisfies

(3.10) λ+1 ≥
{ Smin+6

8
for − 3

2
< Smin ≤ 30,

1+
√
2Smin+4

2
for Smin ≥ 30.

The limiting case of (3.10) occurs if and only if the scalar curvature is constant

and there exists an eta-Killing spinor with Killing pair
{ (

− 1

2
, −S

8
+ 3

4

)
for − 3

2
< Smin ≤ 30,(

−2−
√
2S+4

4
, 4+

√
2S+4

4

)
for Smin ≥ 30.

Proof. Because of the restriction Smin > − 3

2
, it follows from Proposition 3.2

and part (i) of Proposition 3.1 that λ+1 ≤ 1

2
is not allowed. Consequently, part

(ii) and (iii) of Proposition 3.1 together give

λ+1 ≥ min

{
Smin + 6

8
,
1 +

√
2Smin + 4

2

}
,

which we can equivalently rewrite as (3.10). The condition for the limiting case
of (3.10) is easy to check. �

Remark 3.3. Let (M3, φ, ξ, η, g) be a simply-connected Sasakian spin manifold
of dimension 3 and suppose that the scalar curvature S is constant. We proved
in [8] that if S ≥ −2, then there exists an eta-Killing spinor ψ with Killing



440 EUI CHUL KIM

pair
(

−2+
√
2S+4

4
, 4−

√
2S+4

4

)
. In particular, if we choose S = − 3

2
, then ψ is a

harmonic spinor. This means that our restriction Smin > − 3

2
in Theorem 3.1

is reasonable.
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