A LIOUVILLE TYPE THEOREM FOR HARMONIC MORPHISMS

SEOUNG DAL JUNG, HUILI LIU, AND DONG JOO MOON

ABSTRACT. Let M be a complete Riemannian manifold and let N be a Riemannian manifold of nonpositive scalar curvature. Let μ_0 be the least eigenvalue of the Laplacian acting on L^2 -functions on M. We show that if $Ric^M \geq -\mu_0$ at all $x \in M$ and either $Ric^M > -\mu_0$ at some point x_0 or Vol(M) is infinite, then every harmonic morphism $\phi: M \to N$ of finite energy is constant.

1. Introduction

Let (M,g) and (N,h) be smooth Riemannian manifolds and let $\phi:M\to N$ be a smooth map. For a compact domain $\Omega\subset M$, the energy E of ϕ over Ω is defined by

$$(1.1) \hspace{1cm} E(\phi;\Omega) = \frac{1}{2} \int_{\Omega} |d\phi|^2 \mu_M,$$

where the differential $d\phi$ is a section of the bundle $T^*M\otimes\phi^{-1}TN\to M$ and $\phi^{-1}TN$ denotes the pull-back bundle via the map ϕ . The bundle $T^*M\otimes\phi^{-1}TN\to M$ carries the connection ∇ induced by the Levi-Civita connections on M and N.

A map $\phi: M \to N$ is called harmonic if ϕ is a critical point of the energy functional defined by (1.1) on any compact domain $\Omega \subset M$, or equivalently the tension field $\tau(\phi) = \operatorname{tr}_g \nabla d\phi$ is identically zero, where tr_g denote the trace with respect to the metric g. Several studies are given for harmonic maps ([3]). For these harmonic maps, there are Liouville type theorems, which states that a harmonic map ϕ is constant under some conditions. The classical Liouville theorem says that any bounded harmonic function defined on the whole plane must be constant. In 1975, S. T. Yau ([10]) generalized the Liouville theorem to harmonic functions on Riemannian manifolds of nonnegative Ricci curvature. In 1976, R. M. Schoen and S. T. Yau ([8]) proved the following theorem.

Theorem 1.1. ([8]) Let $\phi: M \to N$ be a harmonic map from a complete, noncompact Riemannian manifold M with nonnegative Ricci curvature to a

Received March 3, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 58E20.

Key words and phrases. harmonic map, harmonic morphism.

complete Riemannian manifold N with nonpositive sectional curvature. If the energy of ϕ is finite, then ϕ is constant.

In 1997, S. D. Jung ([5]) improved Theorem 1.1 to harmonic maps on a complete Riemannian manifold M, where the Ricci curvature Ric^M is bounded from below by a negative constant. In fact, let μ_0 be the least eigenvalue of the Laplacian Δ^M acting on L^2 -functions on the manifold M. Then

Theorem 1.2. ([5]) Let $\phi: M \to N$ be a harmonic map from a complete Riemannian manifold M to a Riemannian manifold N with nonpositive sectional curvature. Assume $Ric^M \ge -\mu_0$ at all $x \in M$ and $Ric^M > -\mu_0$ at some point x_0 . If the energy of ϕ is finite, then ϕ is constant.

A C^0 map $\phi: M \to N$ is called a harmonic morphism if for any harmonic function $f: U \to \mathbb{R}$ on an open set $U \subset N$ such that $\phi^{-1}(U)$ is nonempty, the composition $f \circ \phi: \phi^{-1}(U) \to \mathbb{R}$ is also a harmonic function on $\phi^{-1}(U)$.

As a generalization of Riemannian submersions, a horizontally weakly conformal map is a map $\phi:(M,g)\to (N,h)$ with the property that for each $x\in M$ at which $d\phi_x\neq 0$, the restriction $d\phi_x|_{H_x}:H_x\to T_{\phi(x)}N$ is conformal and surjective, where H_x denotes the orthogonal complement of $V_x=\ker d\phi_x$ in T_xM . We call H_x the horizontal and V_x the vertical space of ϕ at x. Thus $T_xM=V_x\oplus H_x$. Let $C_\phi=\{x\in M|d\phi_x=0\}$. Trivially, ϕ is horizontally weakly conformal if and only if there exists a function $\lambda:M\backslash C_\phi\to\mathbb{R}^+$ such that

(1.2)
$$h(d\phi(X), d\phi(Y)) = \lambda^2 g(X, Y) \quad \forall X, Y \in H_x.$$

Note that at the point $x \in C_{\phi}$ we can let $\lambda(x) = 0$ and obtain a continuous function $\lambda : M \to \mathbb{R}^+ \cup \{0\}$ which is called the *dilation* of a horizontally weakly conformal map ϕ .

It is well-known ([4]) that a smooth map $\phi:(M,g)\to(N,h)$ between Riemannian manifolds is a harmonic morphism if any only if it is harmonic and horizontally weakly conformal. It is also well-known ([4]) that if $\dim(M) < \dim(N)$, then every harmonic morphism must be constant.

For the Liouville type theorem for harmonic morphisms in case of $\dim M \ge \dim N$, G. Choi and G. Yun ([2]) recently proved the following theorem.

Theorem 1.3. ([2]) Let $\phi: M \to N$ be a harmonic morphism from a complete, noncompact Riemannian manifold M of nonnegative Ricci curvature to a complete Riemannian manifold N with nonpositive scalar curvature. If the energy of ϕ is finite, then ϕ is constant.

In this paper, we give extension of Theorem 1.3 to manifolds, where the Ricci curvature of M is bounded from below by $-\mu_0$. That is, our main theorem is the following:

Theorem 1.4. Let $\phi: M \to N$ be a harmonic morphism from a complete, noncompact Riemannian manifold M to a complete Riemannian manifold N

with nonpositive scalar curvature. Assume that $Ric^M \ge -\mu_0$ at all $x \in M$ and either $Ric^M > -\mu_0$ at some point x_0 or Vol(M) is infinite. If the energy of ϕ is finite, then ϕ is constant.

2. The Weitzenböck formula

In this section, we review the Weitzenböck formula (see [7, 9]). Let (M^m, g) and (N^n, h) be Riemannian manifolds and let ∇^M and ∇^N be their Levi-Civita connections respectively. Let $\phi: M \to N$ be a smooth map and $E = \phi^{-1}TN$ be the induced bundle over M. Then E has a naturally induced metric connection $\nabla \equiv \phi^{-1}\nabla^N$ and $d\phi$ is a cross section of Hom(TM, E) over M. Since Hom(TM, E) is canonically identified with $T^*M \otimes E$, $d\phi$ is regarded as an E-valued 1-form. Let $d_{\nabla}: A^r(E) \to A^{r+1}(E)$ be an anti-derivation and δ_{∇} the formal adjoint of d_{∇} , where $A^r(E)$ is the space of E-valued r-forms with an inner product $\langle \cdot, \cdot \rangle$ on M. Let $\{e_i\}_{i=1,\dots,m}$ and $\{v_a\}_{a=1,\dots,n}$ be local orthonormal frame fields on M and N respectively, and let $\{\omega^i\}$ and $\{\theta^a\}$ be their dual coframe fields respectively. Locally, the operators d_{∇} and δ_{∇} are expressed by

$$d_{
abla} = \sum_{j=1}^{m} \omega^{j} \wedge
abla_{e_{j}} \quad ext{and} \quad \delta_{
abla} = -\sum_{j=1}^{m} i(e_{j})
abla_{e_{j}},$$

respectively, where i(X) is the interior product. The Laplacian Δ on $A^*(E)$ is defined by

$$(2.1) \Delta = d_{\nabla}\delta_{\nabla} + \delta_{\nabla}d_{\nabla}.$$

Then the Weitzenböck formula is given by

(2.2)
$$\Delta = -\sum_{i} \nabla^{2}_{e_{j}e_{j}} + \sum_{k,i} \omega^{k} \wedge i(e_{j})R(e_{j}, e_{k}),$$

where $\nabla_{XY}^2 = \nabla_X \nabla_Y - \nabla_{\nabla_X^M Y}$ and $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ for any $X,Y \in TM$. From (2.2), we have that for any $\Phi \in A^r(E)$,

(2.3)
$$-\frac{1}{2}\Delta^M |\Phi|^2 = |\nabla \Phi|^2 + \langle \sum_i \nabla^2_{e_j e_j} \Phi, \Phi \rangle.$$

Equivalently,

$$(2.4) \qquad -\frac{1}{2}\Delta^{M}|\Phi|^{2} = |\nabla\Phi|^{2} - \langle\Delta\Phi,\Phi\rangle + \sum_{k,j}\langle\omega^{k}\wedge i(e_{j})R(e_{j},e_{k})\Phi,\Phi\rangle.$$

Let R^E be the curvature tensor of ∇ on E. Then R^E is related to the curvature tensor R^N of ∇^N in the following way: let $X,Y\in T_xM$ and $s\in\Gamma E$, then

(2.5)
$$R^{E}(X,Y)s = R^{N}(d\phi_{x}(X), d\phi_{x}(Y))s.$$

When a function f is given on N, we shall identify it throughout this paper with the function $f \circ \phi$ induced on M. Let $f^a \equiv \phi^* \theta^a$. Then $d\phi$ is expressed by

$$(2.6) d\phi = \sum_{a=1}^{n} f^{a} \otimes v_{a}.$$

Since a direct calculation gives

$$(2.7) R(e_j, e_k)d\phi = \sum_a R^M(e_j, e_k)f^a \otimes v_a + \sum_a f^a \otimes R^E(e_j, e_k)v_a,$$

we have

$$\begin{split} \sum_{k,j} \langle \omega^k \wedge i(e_j) R(e_j,e_k) d\phi, d\phi \rangle &= \sum_{k,j,a,b} \langle \omega^k \wedge i(e_j) R^M(e_j,e_k) f^a \otimes v_a, f^b \otimes v_b \rangle \\ &+ \sum_{k,j,a,b} g(\omega^k \wedge i(e_j) f^a, f^b) h(R^E(e_j,e_k) v_a, v_b). \end{split}$$

Since $d\phi(e_l) = \sum_a f^a(e_l)v_a$, we have

$$(2.8) \qquad \sum_{k,j,a} g(\omega^k \wedge i(e_j)R^M(e_j,e_k)f^a, f^a) = \sum_k h(d\phi(Ric^M(e_k)), d\phi(e_k)).$$

From (2.5) and (2.8), we have

$$(2.9) \sum_{k,j} \langle \omega^k \wedge i(e_j) R(e_j, e_k) d\phi, d\phi \rangle = \sum_k h(d\phi(Ric^M(e_k)), d\phi(e_k)) + \sum_k h(R^N(d\phi(e_j), d\phi(e_k)) d\phi(e_j), d\phi(e_k)).$$

Hence we have the following lemma.

Lemma 2.1. ([7]) Let $\phi:(M,g)\to(N,h)$ be an arbitrary smooth map. Then the Weitzenböck formula is given by

$$(2.10) -\frac{1}{2}\Delta^M|d\phi|^2 = |\nabla d\phi|^2 - \langle d\phi, \Delta d\phi \rangle + F(\phi),$$

where

(2.11)
$$F(\phi) = \sum_{k=1}^{m} h(d\phi(Ric^{M}(e_{k})), d\phi(e_{k})) - \sum_{k,j=1}^{m} h(R^{N}(d\phi(e_{j}), d\phi(e_{k}))d\phi(e_{k}), d\phi(e_{j})).$$

3. Proof of Theorem 1.4

Assume that $\dim M = m \ge n = \dim N$. Let $\phi: M \to N$ be a harmonic morphism and λ the dilation of ϕ . Let $\{e_i\}_{i=1,\ldots,m}$ be a local orthonormal frame field on M such that $\{e_i\} \in H_x$ $(i=1,\ldots,n)$ and $\{e_{n+i}\} \in V_x$ $(i=1,\ldots,m-n)$. Note that for any harmonic map, $d_{\nabla}(d\phi) = \delta_{\nabla}(d\phi) = 0$ ([3]).

From (1.2) and (2.10), we have the following lemma.

Lemma 3.1. ([6]) If $\phi: M \to N$ is a harmonic morphism, then

(3.1)
$$-\frac{n}{2}\Delta^{M}\lambda^{2} = |\nabla d\phi|^{2} + \lambda^{2} \operatorname{tr} Ric^{M}|_{\mathcal{H}} - \lambda^{4} r_{N} \circ \phi,$$

where λ denotes the dilation, $\operatorname{tr} Ric^M|_{\mathcal{H}}$ the trace of the Ricci tensor of M on the horizontal distribution \mathcal{H} , and r_N the scalar curvature of N.

Let μ_0 be the least eigenvalue of Δ^M acting on L^2 -functions on M. Then we have the following lemma.

Lemma 3.2. Let M be a complete Riemannian manifold such that $Ric^M \ge -\mu_0$ at all $x \in M$ and let N be a Riemannian manifold of nonpositive scalar curvature. If $\phi: M \to N$ is a harmonic morphism, then

(3.2)
$$n\Delta^{M}\lambda \leq -\lambda \operatorname{tr}Ric^{M}|_{\mathcal{H}} \leq n\mu_{0}\lambda.$$

Proof. Since $\Delta^M \lambda^2 = 2\lambda \Delta^M \lambda - 2|\nabla^M \lambda|^2$, we have from (3.1),

(3.3)
$$n\lambda \Delta^M \lambda = n|\nabla^M \lambda|^2 - |\nabla d\phi|^2 - \lambda^2 \operatorname{tr} Ric^M|_{\mathcal{H}} + \lambda^4 r_N \circ \phi.$$

Since $|d\phi|^2 = n\lambda^2$, we have $|d\phi|\nabla^M|d\phi| = n\lambda\nabla^M\lambda$ and

$$|\nabla^M |d\phi||^2 = n|\nabla^M \lambda|^2.$$

By the first Kato's inequality ([1]), i.e., $|\nabla^M|d\phi||^2 \leq |\nabla d\phi|^2$, (3.4) yields

$$(3.5) n|\nabla^M \lambda|^2 \le |\nabla d\phi|^2.$$

Since the scalar curvature r_N of N is nonpositive, the first inequality of (3.2) follows from (3.3) and (3.5). The second inequality of (3.2) is trivial from $Ric^M \ge -\mu_0$.

Proof of Theorem 1.4. We choose a Lipschitz continuous function ω_{ℓ} on M such that $\omega_{\ell} \in C_0^{\infty}(M)$ and $\omega_{\ell} \equiv 1$ on $B(x_0, \ell)$, $\lim_{\ell \to \infty} \omega_{\ell} = 1$, supp $\omega_{\ell} \subset B(x_0, 2\ell)$ and $|d\omega_{\ell}| \leq C/\ell$ for some constant C, where $\ell \in \mathbb{R}^+$ and $B(x_0, \ell)$ is the Riemannian open ball with radius ℓ .

Multiplying (3.2) by $\omega_{\ell}^2 \lambda$ and integrating by parts, we obtain

$$(3.6) n \int_{M} \langle d\lambda, d(\omega_{\ell}^{2}\lambda) \rangle \leq - \int_{M} \omega_{\ell}^{2} \lambda^{2} \operatorname{tr} Ric^{M} |_{\mathcal{H}} \leq n \mu_{0} \int_{M} (\omega_{\ell}\lambda)^{2}.$$

By a direct calculation, we have

(3.7)
$$\langle d\lambda, d(\omega_{\ell}^{2}\lambda) \rangle = 2\omega_{\ell}\lambda \langle d\lambda, d\omega_{\ell} \rangle + |\omega_{\ell}d\lambda|^{2}$$

$$= |d(\omega_{\ell}\lambda)|^{2} - \lambda^{2}|d\omega_{\ell}|^{2}.$$

From (3.6) and (3.7), we have

(3.8)
$$\int_{M} |d(\omega_{\ell}\lambda)|^{2} \leq -\frac{1}{n} \int_{M} \omega_{\ell}^{2} \lambda^{2} \operatorname{tr} Ric^{M} |_{\mathcal{H}} + \int_{M} \lambda^{2} |d\omega_{\ell}|^{2}$$
$$\leq \mu_{0} \int_{M} (\omega_{\ell}\lambda)^{2} + \int_{M} \lambda^{2} |d\omega_{\ell}|^{2}.$$

Since μ_0 is the infimum of the spectrum of the Laplacian Δ^M acting on L^2 -functions on M, the Rayleigh theorem implies

(3.9)
$$\int_{M} |d(\omega_{\ell}\lambda)|^{2} \ge \mu_{0} \int_{M} (\omega_{\ell}\lambda)^{2}.$$

If we let $\ell \to +\infty$ in (3.8) with (3.9), then we have

(3.10)
$$\mu_0 \int_M \lambda^2 \le -\frac{1}{n} \int_M \lambda^2 \operatorname{tr} Ric^M |_{\mathcal{H}} \le \mu_0 \int_M \lambda^2.$$

This means that

(3.11)
$$0 = \int_{M} (n\mu_0 + \operatorname{tr}Ric^{M}|_{\mathcal{H}})\lambda^2 = \frac{1}{n} \int_{M} (n\mu_0 + \operatorname{tr}Ric^{M}|_{\mathcal{H}})|d\phi|^2.$$

If $Ric^M \ge -\mu_0$ at all x and $Ric^M > -\mu_0$ at some x_0 , then $n\mu_0 + \text{tr}Ric^M|_{\mathcal{H}} \ge 0$ for all x and $n\mu_0 + \text{tr}Ric^M|_{\mathcal{H}} > 0$ at some point x_0 , respectively. The unique continuation property for sections implies $|d\phi| = 0$, i.e., ϕ is constant.

Now we study Theorem 1.4 under the assumption $Ric^M \ge -\mu_0$ and $Vol(M) = \infty$. We first note that for any real number $\delta > 0$

$$(3.12) \qquad |2\int_{M}\omega_{\ell}\lambda\langle d\lambda,d\omega_{\ell}\rangle| \leq \delta^{2}\int_{M}\omega_{\ell}^{2}|d\lambda|^{2} + \frac{1}{\delta^{2}}\int_{M}\lambda^{2}|d\omega_{\ell}|^{2}.$$

From (3.6), (3.7) and (3.12), we have

$$(1 - \delta^2) \int_M \omega_\ell^2 |d\lambda|^2 - \frac{1}{\delta^2} \int_M \lambda^2 |d\omega_\ell|^2 \le -\frac{1}{n} \int_M \omega_\ell^2 \lambda^2 \operatorname{tr} Ric^M |_{\mathcal{H}}$$

$$(3.13) \qquad \le \mu_0 \int_M (\omega_\ell \lambda)^2.$$

From (3.13), Fatou's lemma implies that $d\lambda$ is L^2 -section. Hence if we choose $\delta = \frac{1}{\sqrt{\ell}}$ and let $\ell \to +\infty$, then

(3.14)
$$\int_{M} |d\lambda|^{2} \leq -\frac{1}{n} \int_{M} \lambda^{2} \operatorname{tr} Ric^{M}|_{\mathcal{H}} \leq \mu_{0} \int_{M} \lambda^{2}.$$

On the other hand, from (3.7) and (3.12) we similarly obtain

$$(3.15) \qquad (1+\delta^2) \int_{M} \omega_{\ell}^2 |d\lambda|^2 \ge \int_{M} |d(\omega_{\ell}\lambda)|^2 - (1+\frac{1}{\delta^2}) \int_{M} \lambda^2 |d\omega_{\ell}|^2.$$

If we put $\delta = \frac{1}{\sqrt{\ell}}$ and let $\ell \to +\infty$, then we have from (3.9)

(3.16)
$$\int_{M} |d\lambda|^{2} \ge \mu_{0} \int_{M} \lambda^{2}.$$

From (3.14) and (3.16), we have $\int_M (\Delta^M \lambda - \mu_0 \lambda) \lambda = 0$. Hence (3.2) implies that $\Delta^M \lambda = \mu_0 \lambda$. This means that λ is nonnegative L^2 -subharmonic function. By the maximum principle ([11]), λ is constant. Since $\operatorname{Vol}(M) = \infty$, it is trivial that $\lambda = 0$, which yields that ϕ is constant.

Acknowledgements. The first author was partially supported by proj. No. F01-2005-000-100024-0 from KOSEF and ABRL grant proj. NO. R14-2002-003-01002-0 from KRF. The second author was partially supported by NSFC, No. 10371013; Joint Research of NSFC and KOSEF.

References

- [1] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), no. 3, 261–266.
- [2] G. Choi and G. Yun, A theorem of Liouville type for harmonic morphisms, Geom. Dedicata 84 (2001), 179–182
- [3] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68.
- [4] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, 107-144.
- [5] S. D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997), no. 2, 147-154.
- [6] A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphisms, Osaka J. Math. 27 (1990), no. 4, 899-928.
- [7] N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312.
- [8] R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 51 (1976), no. 3, 333–341.
- [9] H. Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, 289-538.
- [10] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), no. 7, 201–228.
- [11] _____, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.

SEOUNG DAL JUNG DEPARTMENT OF MATHEMATICS CHEJU NATIONAL UNIVERSITY JEJU 690-756, KOREA

E-mail address: sdjung@cheju.ac.kr

HUILI LIU
DEPARTMENT OF MATHEMATICS
NORTHEASTERN UNIVERSITY
SHENYANG 110004, CHINA
E-mail address: 1iuhl@mail.neu.edu.cn

Dong Joo Moon Department of Mathematics Cheju National University Jeju 690-756, Korea

E-mail address: sanakgol@paran.com