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A LIOUVILLE TYPE THEOREM FOR HARMONIC
MORPHISMS

SeEOUNG DAL Jung, HuiL Liu, AND DoNG Joo MOON

ABSTRACT. Let M be a complete Riemannian manifold and let N be a
Riemannian manifold of nonpositive scalar curvature. Let ug be the least
eigenvalue of the Laplacian acting on L?-functions on M. We show that
if RicM > —pug at all 2 € M and either Ric™ > —pp at some point xg or
Vol(M) is infinite, then every harmonic morphism ¢ : M — N of finite
energy is constant.

1. Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let ¢ : M — N

be a smooth map. For a compact domain 2 C M, the energy E of ¢ over Q is
defined by

(1.1 B(6:9) = 5 [ 18

where the differential d¢ is a section of the bundle T*M ® ¢ *TN — M and
¢~'TN denotes the pull-back bundle via the map ¢. The bundle T*M ®
¢~'TN — M carries the connection V induced by the Levi-Civita connections
on M and N.

A map ¢ : M — N is called harmonic if ¢ is a critical point of the energy
functional defined by (1.1) on any compact domain @ C M, or equivalently
the tension field T(¢) = tryVde is identically zero, where trg, denote the trace
with respect to the metric g. Several studies are given for harmonic maps ([3]).
For these harmonic maps, there are Liouville type theorems, which states that
a harmonic map ¢ is constant under some conditions. The classical Liouville
theorem says that any bounded harmonic function defined on the whole plane
must be constant. In 1975, S. T. Yau ([10]) generalized the Liouville theorem to
harmonic functions on Riemannian manifolds of nonnegative Ricci curvature.
In 1976, R. M. Schoen and S. T. Yau ([8]) proved the following theorem.

Theorem 1.1. ([8]) Let ¢ : M — N be a harmonic map from a complete,
noncompact Riemannian manifold M with nonnegative Ricei curvature to a

Received March 3, 2006.
2000 Mathematics Subject Classification. 58E20.
Key words and phrases. harmonic map, harmonic morphism.

(©2007 The Korean Mathematical Society
941



942 SEOUNG DAL JUNG, HUILI LIU, AND DONG JOO MOON

complete Riemannian manifold N with nonpositive sectional curvature. If the
energy of ¢ is finite, then ¢ is constant.

In 1997, S. D. Jung ([5]) improved Theorem 1.1 to harmonic maps on a
complete Riemannian manifold M, where the Ricci curvature Ric™ is bounded
from below by a negative constant. In fact, let ug be the least eigenvalue of
the Laplacian AM acting on L2-functions on the manifold M. Then

Theorem 1.2. ([5]) Let ¢ : M — N be a harmonic map from a complete Rie-
mannian manifold M to a Riemannian manifold N with nonpositive sectional
curvature. Assume Ric™ > —pg at all x € M and Ric™ > —po at some point
xo. If the energy of & is finite, then ¢ is constant.

A C°® map ¢ : M — N is called a harmonic morphism if for any harmonic
function f : U — R on an open set U C N such that ¢~!(U) is nonempty, the
composition fo ¢ : ¢~ () — R is also a harmonic function on ¢=1(U).

As a generalization of Riemannian submersions, a horizontally weakly con-
formal map is a map ¢ : (M,g) — (N,h) with the property that for each
x € M at which d¢, # 0, the restriction d¢y|n, : Hy — Ty(s)N is conformal
and surjective, where H, denotes the orthogonal complement of V, = kerd¢,
in T,M. We call H, the horizontal and V, the vertical space of ¢ at z. Thus
T.M =V, ® H,. Let Cp = {z € M|dp, = 0}. Trivially, ¢ is horizontally
weakly conformal if and only if there exists a function A : M\Cyp — RT such
that

(1.2) h(d$(X),dp(Y)) = N2¢g(X,Y) VX,Y € H,.

Note that at the point € Cy we can let A(z) = 0 and obtain a continuous
function A : M — Rt U{0} which is called the dilation of a horizontally weakly
conformal map ¢.

It is well-known ([4]) that a smooth map ¢ : (M,g) — (N,h) between
Riemannian manifolds is a harmonic morphism if any only if it is harmonic
and horizontally weakly conformal. It is also well-known ([4]) that if dim(M) <
dim(N), then every harmonic morphism must be constant.

For the Liouville type theorem for harmonic morphisms in case of dimM >
dim/N, G. Choi and G. Yun ([2]) recently proved the following theorem.

Theorem 1.3. ([2]) Let ¢ : M — N be a harmonic morphism from a com-
plete, noncompact Riemannian manifold M of nonnegative Ricci curvature to
a complete Riemannian manifold N with nonpositive scalar curvature. If the
energy of ¢ is finite, then ¢ is constant.

In this paper, we give extension of Theorem 1.3 to manifolds, where the Ricci
curvature of M is bounded from below by —ug. That is, our main theorem is
the following:

Theorem 1.4. Let ¢ : M — N be a harmonic morphism from a complete,
noncompact Riemannian manifold M to a complete Riemannian manifold N
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with nonpositive scalar curvature. Assume that RicM > —pg at allz € M and
either Ric™ > —pg at some point xg or Vol(M) is infinite. If the energy of ¢
is finite, then ¢ is constant.

2. The Weitzenbock formula

In this section, we review the Weitzenbock formula (see [7, 9]). Let (M™, g)
and (N™, h) be Riemannian manifolds and let VM and V¥ be their Levi-
Civita connections respectively. Let ¢ : M — N be a smooth map and E =
¢~!TN be the induced bundle over M. Then E has a naturally induced metric
connection V = ¢~'V" and d¢ is a cross section of Hom(T M, E) over M.
Since Hom(T M, E) is canonically identified with T*M ® E, d¢ is regarded as
an E-valued 1-form. Let dy : A"(E) — A""!(E) be an anti-derivation and
6y the formal adjoint of dy, where A"(E) is the space of E-valued r-forms
with an inner product (-,-) on M. Let {e;}i=1,..,m and {vg}a=1,..,n be local
orthonormal frame fields on M and N respectively, and let {w'} and {6°} be
their dual coframe fields respectively. Locally, the operators dy and év are
expressed by

m

dy =Y W/ AV, and dv=- i(e;)Ve,,
j=1

Jj=1

respectively, where i(X) is the interior product. The Laplacian A on A*(E) is
defined by

(2.1) A = dydv + dvdy.

Then the Weitzenbock formula is given by

(2.2) A= ~ZV§jej +Zwk Ni(e;)R(ej, ex),
J k.j

where V%y = VxVy — Vyuy and R(X,Y) = [Vx,Vy| — Vixy) for any
X,Y € TM. From (2.2), we have that for any ® € A"(E),

1
(2.3) ~§AM|<1>|2 = Vo> + () V2, 3,0).
J
Equivalently,
1
(2.4) —iAM|<I>|2 = |V®|* — (A, ®) + > (w* Ai(e;)R(e;, ex)®, D).
k,j

Let RE be the curvature tensor of V on E. Then RE is related to the curvature
tensor RY of V¥ in the following way: let X,Y € T, M and s € T'E, then

(2.5) RE(X,Y)s = RN (d¢o(X), d¢,(Y))s.
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When a function f is given on N, we shall identify it throughout this paper
with the function f o ¢ induced on M. Let f* = ¢*#*. Then d¢ is expressed
by

(2.6) dp=>" f*® va.

a=1

Since a direct calculation gives
(2.7) R(ej, ex)dd = ZRM(ej, ex)f* @u, + Z f* ® RZ(e;, ex)va,

we have
Z(wk Ni(e;)R(e;, ex)dd, do) = Z (W* Ni(e;)RM (e, ex) f* ® va, f* © va)
k,j k,j,a,b

+ Y 9w Ailes) e, FPR(R® (5, €k)va, vb)-

k.j,a,b

Since dg(e;) =), f%(e1)va, we have

28) 3 9wk ni(e,)RM (ej,ex)f%, 1) = 3 h(dg(Ric™ (ex)), d(ex)-

k,j,a k

From (2.5) and (2.8), we have

(2.9)
D_(W* Nilej)R(ej, ex)dd, dg) =Y h(d(Ric™ (ex)), d(ex))
k,j k
+ > (BN (dg(e;), db(ex))dd(e;), db(ex)).
k)j

Hence we have the following lemma.

Lemma 2.1. ([7]) Let ¢ : (M, g) — (N, h) be an arbitrary smooth map. Then
the Weitzenbdck formula is given by

(2.10) —%AMldaﬁP = |Vdg|* — (d¢, Adg) + F(4),
where
(2.11) F(¢) =) _ h(dd(Ric™ (ex)), dd(ex))

k=1

— > h(RN(dd(e;), d(ex))d(er), dg(e;)).

k.j=1
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3. Proof of Theorem 1.4

Assume that dimM = m > n = dimN. Let ¢ : M — N be a harmonic
morphism and A the dilation of ¢. Let {e;}i=1,...m be a local orthonormal
frame field on M such that {e;} € Hy (: = 1,...,n) and {epts} € Vi (i =
1,...,m —n). Note that for any harmonic map, dv(d¢) = dv(d¢) = 0 ([3]).

From (1.2) and (2.10), we have the following lemma.

Lemma 3.1. ([6]) If ¢ : M — N is a harmonic morphism, then

(3.1) —%AMAQ = |Vdg|? + N2trRicM |y — Xry o ¢,

where A denotes the dilation, trRicM |y the trace of the Ricci tensor of M on
the horizontal distribution H, and ry the scalar curvature of N.

Let pg be the least eigenvalue of AM acting on L3-functions on M. Then
we have the following lemma.

Lemma 3.2. Let M be a complete Riemannian manifold such that RicM >
—po at all x € M and let N be a Riemannian manifold of nonpositive scalar
curvature. If  : M — N is a harmonic morphism, then

(3.2) nAMN < —MrRicM |y < nuo.

Proof. Since AM\? = 20AM )\ — 2|VM |2 we have from (3.1),
(3.3) nAAMA = n|VMAP? — |Vdg|* — M trRicM |y + Ay 0 6.
Since |d@|*> = nA?, we have |d¢|VM|d¢| = nAVM ) and

(3.4) VM dgl|? = n| VM A2
By the first Kato’s inequality ([1]), i.e., [VM|dg||? < |Vd¢|?, (3.4) yields
(3.5) n|VM A2 < |Vde)?.

Since the scalar curvature v of N is nonpositive, the first inequality of (3.2)
follows from (3.3) and (3.5). The second inequality of (3.2) is trivial from
R’l:CM Z — . O

Proof of Theorem 1.4. We choose a Lipschitz continuous function w; on M such
that wy € C§°(M) and we = 1 on B(xo, £), limg— oo we = 1, supp wg C B(xo,2¢)
and |dwy| < C/¢ for some constant C, where £ € Rt and B(zo,4) is the
Riemannian open ball with radius £.

Multiplying (3.2) by w?X and integrating by parts, we obtain

(3.6) n / (A, d(wiN)) < — / wiNttrRicM |y < nuo / (wed)2.
M M M
By a direct calculation, we have
(3.7) (dX, d(WiN)) = 2weA(d), dws) + |wed)|?
= |d(weN)[* — A2 |dwel?.
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From (3.6) and (3.7), we have
(3.8) / |d(wed)? < ——/ 2)\2trRicM|H+/ 22| dw,|?
M
Suo/ (wgk)z-i-/ 22| duwe|?.
M M

Since pg is the infimum of the spectrum of the Laplacian AM acting on L2-
functions on M, the Rayleigh theorem implies

(39) [ P 2 po [ wry
M
If we let £ — 400 in (3.8) with (3.9), then we have
(3.10) Ko / A< / MtrRicM |y < po / A2,

This means that
1 .
(3.11) 0= / (npo + trRicM |3 )22 = ——/ (npo + trRicM|y)|dg|?.
M nJm

If Ric™ > —uo at all z and Ric™ > — o at some xg, then nuo-}—trRz'cM]H >0
for all z and nug + trRicM |y > 0 at some point zg, respectively. The unique
continuation property for sections implies |d¢| = 0, i.e., ¢ is constant.

Now we study Theorem 1.4 under the assumption RicM > —puo and Vol(M)
= oo. We first note that for any real number 6 > 0

1

(3.12) |2/ weA(d), duwg)| < 52/ w§|dA|2+5—2/ M| duwg 2.

M M M
From (3.6), (3.7) and (3.12), we have
(1-52)/ WA — / 22 dug|? < _%/ WXt RicM |y
M

(3.13) < po / (weA)?.

M

From (3.13), Fatou’s lemma implies that dX is L?-section. Hence if we choose
0= ﬁ and let £ — 400, then

(3.14) / |dA]? < / NtrRicM |y < uo / A2,

On the other hand, from (3.7) and (3.12) we similarly obtain
1
615) e [ P> [ P - 0+ g [ e
M M

If we put § = % and let £ — 400, then we have from (3.9)

(3.16) /M |dA2 > po /M A2,
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From (3.14) and (3.16), we have [, (AMX — ugA)A = 0. Hence (3.2) implies
that AMX = jpA. This means that X is nonnegative L?-subharmonic function.
By the maximum principle ([11]), A is constant. Since Vol(M) = oo, it is trivial
that A = 0, which yields that ¢ is constant. 0
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