• Title/Summary/Keyword: Saigo

Search Result 18, Processing Time 0.021 seconds

A Study of Marichev-Saigo-Maeda Fractional Integral Operators Associated with the S-Generalized Gauss Hypergeometric Function

  • Bansal, Manish Kumar;Kumar, Devendra;Jain, Rashmi
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.433-443
    • /
    • 2019
  • In this work, we evaluate the Mellin transform of the Marichev-Saigo-Maeda fractional integral operator with Appell's function $F_3$ type kernel. We then discuss six special cases of the result involving the Saigo fractional integral operator, the $Erd{\acute{e}}lyi$-Kober fractional integral operator, the Riemann-Liouville fractional integral operator and the Weyl fractional integral operator. We obtain new and known results as special cases of our main results. Finally, we obtain the images of S-generalized Gauss hypergeometric function under the operators of our study.

FRACTIONAL DIFFERENTIATION OF THE PRODUCT OF APPELL FUNCTION F3 AND MULTIVARIABLE H-FUNCTIONS

  • Choi, Junesang;Daiya, Jitendra;Kumar, Dinesh;Saxena, Ram Kishore
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.115-129
    • /
    • 2016
  • Fractional calculus operators have been investigated by many authors during the last four decades due to their importance and usefulness in many branches of science, engineering, technology, earth sciences and so on. Saigo et al. [9] evaluated the fractional integrals of the product of Appell function of the third kernel $F_3$ and multivariable H-function. In this sequel, we aim at deriving the generalized fractional differentiation of the product of Appell function $F_3$ and multivariable H-function. Since the results derived here are of general character, several known and (presumably) new results for the various operators of fractional differentiation, for example, Riemann-Liouville, $Erd\acute{e}lyi$-Kober and Saigo operators, associated with multivariable H-function and Appell function $F_3$ are shown to be deduced as special cases of our findings.

CERTAIN FRACTIONAL INTEGRALS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang;Singh, Gurmej
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.423-436
    • /
    • 2018
  • We aim to establish certain Saigo hypergeometric fractional integral formulas for a finite product of the generalized k-Bessel functions, which are also used to present image formulas of several integral transforms including beta transform, Laplace transform, and Whittaker transform. The results presented here are potentially useful, and, being very general, can yield a large number of special cases, only two of which are explicitly demonstrated.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang;Agarwal, Praveen
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.283-291
    • /
    • 2014
  • A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.

PLANCHEREL AND PALEY-WIENER THEOREMS FOR AN INDEX INTEGRAL TRANSFORM

  • Kim, Vu--Tuan;Ali Ismail;Megumi Saigo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.545-563
    • /
    • 2000
  • An integral transform with the Bessel function Jv(z) in the kernel is considered. The transform is relatd to a singular Sturm-Liouville problem on a half line. This relation yields a Plancherel's theorem for the transform. A Paley-Wiener-type theorem for the transform is also derived.

  • PDF