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CERTAIN FRACTIONAL INTEGRAL INEQUALITIES

INVOLVING HYPERGEOMETRIC OPERATORS

Junesang Choi∗ and Praveen Agarwal

Abstract. A remarkably large number of inequalities involving the frac-

tional integral operators have been investigated in the literature by many

authors. Very recently, Baleanu et al. [2] gave certain interesting frac-
tional integral inequalities involving the Gauss hypergeometric functions.

Using the same fractional integral operator, in this paper, we present some
(presumably) new fractional integral inequalities whose special cases are

shown to yield corresponding inequalities associated with Saigo, Erdélyi-

Kober and Riemann-Liouville type fractional integral operators. Relevant
connections of the results presented here with those earlier ones are also

pointed out.

1. Introduction and preliminaries

Throughout the present investigation, we shall (as usual) denote N, R, C,
and Z−0 by the sets of positive integers, real numbers, complex numbers, and
nonpositive integers, respectively, and N0 := N ∪ {0}. Consider the following
functional:

T (f, g, p, q) =

∫ b

a

q(x) dx

∫ b

a

p(x) f(x) g(x) dx

+

∫ b

a

p(x)dx

∫ b

a

q(x) f(x) g(x)dx

−

(∫ b

a

q(x) f(x)dx

)(∫ b

a

p(x) g(x)dx

)

−

(∫ b

a

p(x) f(x)dx

)(∫ b

a

q(x) g(x)dx

)
,

(1.1)
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where f, g : [a, b]→ R are two integrable functions on [a, b] and p(x) and q(x)
are positive integrable functions on [a, b]. If f and g are synchronous on [a, b],
i.e.,

(f(x)− f(y)) (g(x)− g(y)) ≥ 0, (1.2)

for any x, y ∈ [a, b], then we have (see, e.g., [11] and [14]):

T (f, g, p, q) ≥ 0. (1.3)

The inequality in (1.2) is reversed if f and g are asynchronous on [a, b], i.e.,

(f(x)− f(y)) (g(x)− g(y)) ≤ 0, (1.4)

for any x, y ∈ [a, b]. If p(x) = q(x) for any x, y ∈ [a, b], we get the Chebyshev
inequality (see [4]). Ostrowski [16] established the following generalization of
the Chebyshev inequality: If f and g are two differentiable and synchronous
functions on [a, b], and p is a positive integrable function on [a, b] with |f ′(x)| ≥
m and |g′(x)| ≥ r for x ∈ [a, b] and nonnegative real constants m and r, then
we have

T (f, g, p) = T (f, g, p, p) ≥ mr T (x− a, x− a, p) ≥ 0. (1.5)

If f and g are asynchronous on [a, b], then we have

T (f, g, p) ≤ mr T (x− a, x− a, p) ≤ 0. (1.6)

If f and g are two differentiable functions on [a, b] with |f ′(x)| ≤ M and
|g′(x)| ≤ R for x ∈ [a, b], and p is a positive integrable function on [a, b], then
we have

|T (f, g, p)| ≤M RT (x− a, x− a, p) ≤ 0. (1.7)

The functional (1.1) has attracted many researchers’ attention due mainly
to diverse applications in numerical quadrature, transform theory, probability
and statistical problems. Among those applications, the functional (1.1) has
also been employed to yield a number of integral inequalities (see, e.g., [1, 3, 8,
9, 10, 12, 15, 18]; for a very recent work, see also [2]). Very recently Dumitru
et al. [2] gave certain interesting fractional integral inequalities involving the
Gauss hypergeometric functions. In the present sequel to these recent works,
we propose to derive certain (presumably) new fractional integral inequalities
involving the Gauss hypergeometric functions whose special cases are shown
to yield corresponding inequalities associated with Saigo fractional integral
operator (3.1), Riemann-Liouville fractional integral operator (3.2) and Erdélyi-
Kober fractional integral operator (3.3). Relevant connections of some of the
results presented here with those earlier ones are also pointed out.

For our purpose, we also need to recall the following definitions and some
earlier works.

Definition 1. A real-valued function f(t) (t > 0) is said to be in the space
Cnµ (n, µ ∈ R), if there exists a real number p > µ such that f (n)(t) = tp φ(t),
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where φ(t) ∈ C(0, ∞). Here, for the case n = 1, we use a simpler notation
C1
µ = Cµ.

Definition 2. Let α > 0, µ > −1 and β, η ∈ R. Then a generalized

fractional integral Iα,β,η,µt (in terms of the Gauss hypergeometric function) of
order α for a real-valued continuous function f(t) is defined by [6] :

Iα,β,η,µt {f(t)} =
t−α−β−2µ

Γ(α)

∫ t

0

τµ(t−τ)α−1 2F1

(
α+ β + µ,−η;α; 1− τ

t

)
f(τ)dτ,

(1.8)
where the function 2F1(·) is the Gaussian hypergeometric function defined by
(see, e.g., [17, Section 1.5]):

2F1 (a, b; c; t) =

∞∑
n=0

(a)n(b)n
(c)n

tn

n!
(1.9)

and Γ(α) is the familiar Gamma function. Here (λ)n is the Pochhammer symbol
defined (for λ ∈ C) by (see, e.g., [17, p. 2 and pp. 4-6]):

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

=
Γ(λ+ n)

Γ(λ)

(
λ ∈ C \ Z−0

)
.

(1.10)

2. Certain inequalities involving generalized fractional integral
operator

Here we start with presenting two inequalities involving generalized frac-
tional integral (1.8) stated in Lemmas 1 and 2 below.

Lemma 1. Let f and g be two continuous and synchronous functions on
[0, ∞) and u, v : [0,∞)→ [0,∞) be continuous functions. Then the following
inequality holds true:

Iα,β,η,µt {u(t)} Iα,β,η,µt {v(t) f(t) g(t)}+ Iα,β,η,µt {v(t)} Iα,β,η,µt {u(t) f(t) g(t)}

≥ Iα,β,η,µt {u(t) f(t)} Iα,β,η,µt {v(t) g(t)}+ Iα,β,η,µt {v(t) f(t)} Iα,β,η,µt {u(t) g(t)} ,
(2.1)

for all t > 0, α > 0, µ > −1 and β, η ∈ R with α+ β + µ = 0 and η 5 0.

Proof. Let f and g be two continuous and synchronous functions on [0, ∞).
Then, for all τ , ρ ∈ (0, t) with t > 0, we have

(f(τ)− f(ρ)) (g(τ)− g(ρ)) ≥ 0, (2.2)

or, equivalently,

f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ). (2.3)
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Consider the following function F (t, τ) defined, 0 < τ < t, by

F (t, τ) =
t−α−β−2µτµ (t− τ)

α−1

Γ (α)
2F1

(
α+ β + µ,−η;α; 1− τ

t

)
=

τµ

Γ(α)

(t− τ)
α−1

tα+β+2µ
+
τµ(α+ β + µ)(−η)

Γ(α+ 1)

(t− τ)
α

tα+β+2µ+1

+
τµ(α+ β + µ)(α+ β + µ+ 1)(−η)(−η + 1)

Γ(α+ 2)

(t− τ)
α+1

tα+β+2µ+2
+ · · · .

(2.4)

We observe that each term of the above series is nonnegative under the condi-
tions in Lemma 1, and hence, the function F (t, τ) remains nonnegative for all
τ ∈ (0, t) (t > 0).
Now, multiplying both sides of (2.3) by F (t, τ)u(τ) defined by (2.4) and inte-
grating the resulting inequality with respect to τ from 0 to t, and using (1.8),
we get

Iα,β,η,µt {u(t) f(t) g(t)}+ f(ρ)g(ρ)Iα,β,η,µt {u(t)}

≥ g(ρ)Iα,β,η,µt {u(t) f(t)}+ f(ρ)Iα,β,η,µt {u(t) g(t)} .
(2.5)

Next, multiplying both sides of (2.5) by F (t, ρ) v(ρ) (0 < ρ < t), where
F (t, ρ) is given when τ is replaced by ρ in (2.4), and integrating the result-
ing inequality with respect to ρ from 0 to t, and using (1.8), we are led to the
desired result (2.1). �

Lemma 2. Let f and g be two continuous and synchronous functions on
[0, ∞) and let u, v : [0,∞)→ [0,∞) be continuous functions. Then the follow-
ing inequality holds true:

Iγ,δ,ζ,νt {v(t)} Iα,β,η,µt {u(t) f(t) g(t)}+ Iγ,δ,ζ,νt {v(t) f(t) g(t)} Iα,β,η,µt {u(t)}

≥ Iγ,δ,ζ,νt {v(t) g(t)} Iα,β,η,µt {u(t) f(t)}+ Iγ,δ,ζ,νt {v(t) f(t)} Iα,β,η,µt {u(t) g(t)} ,
(2.6)

for all t > 0, α > 0, µ > −1, γ > 0, ν > −1 and β, η, δ, ζ ∈ R with
α+ β + µ = 0, η 5 0, γ + δ + ν = 0 and ζ 5 0.

Proof. Multiplying both sides of (2.5) by

t−γ−δ−2νρν (t− ρ)
γ−1

Γ (γ)
2F1

(
γ + δ + ν,−ζ; γ; 1− ρ

t

)
v(ρ) (0 < ρ < t),

which remains nonnegative under the conditions in (2.6), and integrating the
resulting inequality with respect to ρ from 0 to t, and using (1.8), we get the
desired result (2.6). �

Theorem 1. Let f and g be two continuous and synchronous functions
on [0,∞) and let l,m, n : [0,∞) → [0,∞) be continuous functions. Then the
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following inequality holds true:

2Iα,β,η,µt {l(t)}
[
Iα,β,η,µt {m(t)} Iα,β,η,µt {n(t) f(t) g(t)}

+Iα,β,η,µt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}
]

+ 2Iα,β,η,µt {m(t)} Iα,β,η,µt {n(t)} Iα,β,η,µt {l(t) f(t) g(t)}

≥ Iα,β,η,µt {l(t)}
[
Iα,β,η,µt {m(t) f(t)} Iα,β,η,µt {n(t) g(t)}

+Iα,β,η,µt {n(t) f(t)} Iα,β,η,µt {m(t) g(t)}
]

+ Iα,β,η,µt {m(t)}
[
Iα,β,η,µt {l(t) f(t)} Iα,β,η,µt {n(t) g(t)}

+Iα,β,η,µt {n(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]

+ Iα,β,η,µt {n(t)}
[
Iα,β,η,µt {l(t) f(t)} Iα,β,η,µt {m(t) g(t)}

+Iα,β,η,µt {m(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]
,

(2.7)

for all t > 0, α > 0, µ > −1 and β, η ∈ R with α+ β + µ = 0 and η 5 0.

Proof. By setting u = m and v = n in Lemma 1, we get

Iα,β,η,µt {m(t)} Iα,β,η,µt {n(t) f(t) g(t)}+ Iα,β,η,µt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}

≥ Iα,β,η,µt {m(t) f(t)} Iα,β,η,µt {n(t) g(t)}+ Iα,β,η,µt {n(t) f(t)} Iα,β,η,µt {m(t) g(t)} .
(2.8)

Since Iα,β,η,µt {l(t)} = 0 under the given conditions, multiplying both sides of

(2.8) by Iα,β,η,µt {l(t)}, we have

Iα,β,η,µt {l(t)}
[
Iα,β,η,µt {m(t)} Iα,β,η,µt {n(t) f(t) g(t)}

+Iα,β,η,µt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}
]

≥ Iα,β,η,µt {l(t)}
[
Iα,β,η,µt {m(t) f(t)} Iα,β,η,µt {n(t) g(t)}

+Iα,β,η,µt {n(t) f(t)} Iα,β,η,µt {m(t) g(t)}
]
.

(2.9)

Similarly replacing u, v by l, n and u, v by l, m, respectively, in (2.1), and

then multiplying both sides of the resulting inequalities by Iα,β,η,µt {m(t)} and

Iα,β,η,µt {n(t)} both of which are nonnegative under the given assumptions,
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respectively, we get the following inequalities:

Iα,β,η,µt {m(t)}
[
Iα,β,η,µt {l(t)} Iα,β,η,µt {n(t) f(t) g(t)}

+Iα,β,η,µt {n(t)} Iα,β,η,µt {l(t) f(t) g(t)}
]

≥ Iα,β,η,µt {m(t)}
[
Iα,β,η,µt {l(t) f(t)} Iα,β,η,µt {n(t) g(t)}

+Iα,β,η,µt {n(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]

(2.10)

and

Iα,β,η,µt {n(t)}
[
Iα,β,η,µt {l(t)} Iα,β,η,µt {m(t) f(t) g(t)}

+Iα,β,η,µt {m(t)} Iα,β,η,µt {l(t) f(t) g(t)}
]

≥ Iα,β,η,µt {n(t)}
[
Iα,β,η,µt {l(t) f(t)} Iα,β,η,µt {m(t) g(t)}

+Iα,β,η,µt {m(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]
.

(2.11)

Finally, by adding (2.9), (2.10) and (2.11), sides by sides, we arrive at the
desired result (2.7). �

We present another inequality involving the Saigo fractional integral opera-
tor in (1.8) asserted by the following theorem.

Theorem 2. Let f and g be two continuous and synchronous functions on
[0, ∞) and let l, m, n : [0, ∞) → [0, ∞) be continuous functions. Then the
following inequality holds true:

Iα,β,η,µt {l(t)}
[
2Iα,β,η,µt {m(t)} Iγ,δ,ζ,νt {n(t) f(t) g(t)}

+Iα,β,η,µt {n(t)} Iγ,δ,ζ,νt {m(t) f(t) g(t)}

+Iγ,δ,ζ,νt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}
]

+ Iα,β,η,µt {l(t) f(t) g(t)}
[
Iα,β,η,µt {m(t)} Iγ,δ,ζ,νt {n(t)}

]
(2.12)

≥ Iα,β,η,µt {l(t)}
[
Iα,β,η,µt {m(t) f(t)} Iγ,δ,ζ,νt {n(t) g(t)}

+Iα,β,η,µt {m(t) g(t)} Iγ,δ,ζ,νt {n(t) f(t)}
]

+ Iα,β,η,µt {m(t)}
[
Iα,β,η,µt {l(t) f(t)} Iγ,δ,ζ,νt {n(t) g(t)}

+Iα,β,η,µt {l(t) g(t)} Iγ,δ,ζ,νt {n(t) f(t)}
]

+ Iα,β,η,µt {n(t)}
[
Iα,β,η,µt {l(t) f(t)} Iγ,δ,ζ,νt {m(t) g(t)}

+Iα,β,η,µt {l(t) g(t)} Iγ,δ,ζ,νt {m(t) f(t)}
]
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for all t > 0, α > 0, µ > −1 , γ > 0, ν > −1 and β, η, δ, ζ ∈ R with
α+ β + µ = 0, η 5 0, γ + δ + ν = 0 and ζ 5 0.

Proof. Setting u = m and v = n in (2.6), we have

Iγ,δ,ζ,νt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}+ Iγ,δ,ζ,νt {n(t) f(t) g(t)} Iα,β,η,µt {m(t)}

≥ Iγ,δ,ζ,νt {n(t) g(t)} Iα,β,η,µt {m(t) f(t)}+ Iγ,δ,ζ,νt {n(t) f(t)} Iα,β,η,µt {m(t) g(t)} .
(2.13)

Multiplying both sides of (2.13) by Iα,β,η,µt {l(t)}, after a little simplification,
we get

Iα,β,η,µt {l(t)}
[
Iγ,δ,ζ,νt {n(t)} Iα,β,η,µt {m(t) f(t) g(t)}

+Iγ,δ,ζ,νt {n(t) f(t) g(t)} Iα,β,η,µt {m(t)}
]

≥ Iα,β,η,µt {l(t)}
[
Iγ,δ,ζ,νt {n(t) g(t)} Iα,β,η,µt {m(t) f(t)}

+Iγ,δ,ζ,νt {n(t) f(t)} Iα,β,η,µt {m(t) g(t)}
]
.

(2.14)

Now, by replacing u, v by l, n and u, v by l, m in (2.6), respectively, and

then multiplying both sides of the resulting inequalities by Iα,β,η,µt {m(t)} and

Iα,β,η,µt {n(t)}, respectively, we get the following two inequalities

Iα,β,η,µt {m(t)}
[
Iγ,δ,ζ,νt {n(t)} Iα,β,η,µt {l(t) f(t) g(t)}

+Iγ,δ,ζ,νt {n(t) f(t) g(t)} Iα,β,η,µt {l(t)}
]

≥ Iα,β,η,µt {m(t)}
[
Iγ,δ,ζ,νt {n(t) g(t)} Iα,β,η,µt {l(t) f(t)}

+Iγ,δ,ζ,νt {n(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]

(2.15)

and

Iα,β,η,µt {n(t)}
[
Iγ,δ,ζ,νt {m(t)} Iα,β,η,µt {l(t) f(t) g(t)}

+Iγ,δ,ζ,νt {m(t) f(t) g(t)} Iα,β,η,µt {l(t)}
]

≥ Iα,β,η,µt {n(t)}
[
Iγ,δ,ζ,νt {m(t) g(t)} Iα,β,η,µt {l(t) f(t)}

+Iγ,δ,ζ,νt {m(t) f(t)} Iα,β,η,µt {l(t) g(t)}
]
.

(2.16)

Finally we find that the inequality (2.12) follows by adding the inequalities
(2.14), (2.15) and (2.16), sides by sides. �

Remark 1. It may be noted that the inequalities (2.7) and (2.12) in The-
orems 1 and 2, respectively, are reversed if the functions are asynchronous on
[0, ∞). The special case of (2.12) in Theorem 2 when α = γ, β = δ, η = ζ and
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µ = ν is easily seen to yield the inequality (2.7) in Theorem 1.

3. Special Cases and Concluding Remarks

Here we briefly consider some special cases of Theorems 1 and 2 which can
easily be derived by setting (for example) µ = 0; µ = β = 0; µ = 0 and
β = −α. Such interesting consequences of our results would involve the Saigo

fractional integral operators Iα,β,ηt , Erdélyi-Kober fractional integral operators
εα,ηt and the Riemann-Liouville fractional integral operator Rα,ηt . Those rel-
atively simpler fractional integral inequalities involving the Saigo fractional

integral operators Iα,β,ηt , Erdélyi-Kober fractional integral operators εα,ηt and
the Riemann-Liouville fractional integral operator Rα,ηt can be deduced from
Theorems 1 and 2 by appropriately applying the following relationships (see,
e.g., [13]):

Iα,β,ηt {f(t)} :=
t−α−β

Γ(α)

∫ t

0

(t− τ)α−1 2F1

(
α+ β,−η;α; 1− τ

t

)
f(τ)dτ

= Iα,β,η,0t {f(t)} ,
(3.1)

εα,ηt {f(t)} :=
t−α−η

Γ(α)

∫ t

0

(t− τ)α−1 τηf(τ)dτ (α > 0, η ∈ R)

= Iα,0,η,0t {f(t)}
(3.2)

and

Rαt {f(t)} :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ (α > 0) = Iα,−α,η,0t {f(t)} . (3.3)

We conclude our present investigation by remarking further that the results
obtained here are useful in deriving various fractional integral inequalities in-
volving such relatively more familiar fractional integral operators. For example,
if we consider µ = 0 (and ν = 0 additionally for Theorem 2), and make use of
the relation (3.1), Theorems 1 and 2 provide, respectively, the known fractional
integral inequalities due to Choi and Agarwal [5].

Again, for µ = 0 and β = 0 in Theorems 1 and µ = ν = 0 and β = δ = 0
in Theorem 2, and make use of the relation (3.2), Theorems 1 and 2 provide,
respectively, the known fractional integral inequalities due to Choi and Agarwal
[5].

Finally, if we take µ = 0 and β = −α in Theorem 1 and µ = 0, β = −α and
δ = −γ, then Theorems 1 and 2 yield the known result due to Dahmani [7].

We may also emphasize that results derived in this paper are of general
character and can specialize to give further interesting and potentially useful
formulas involving fractional integral operators.
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