• 제목/요약/키워드: Rotating flows

검색결과 196건 처리시간 0.102초

동심원 환내의 정상.비정상 회전 유동 (Steady and Unsteady Rotating Flows between Concentric Cylinders)

  • 심우건
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析) (Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades)

  • 오건제;강신형
    • 대한조선학회지
    • /
    • 제21권2호
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF

편심환내의 회전 유동 (Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

비선형 에크만 분출 모델 (Non-Linear Ekman Pumping Model)

  • 박재현;김정환;김동균;배석태;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.305-306
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict tile rotating flows more precisely than the classical linear model.

  • PDF

비선형 Ekman 펌핑 모델의 개발 (Development of a Nonlinear Ekman Pumping Model)

  • 서용권;박재현
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.

배경회전이 있는 싱크 유동의 이론 및 수치해석 (Theoretical and Numerical Analysis of Sink Flows under a Background Rotation)

  • 서용권;여창호
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.38-44
    • /
    • 2004
  • Theoretical and numerical studies are given to the sink flows within a rotating circular tank driven by the fluid withdrawal from a bottom circular hole. It was found that, when the upper free surface was set with no-slip boundary conditions, the Ekman boundary-layer develops not only above the bottom surface but under the top surface. The sink fluid is coming from the two Ekman layers, and the mass transfer from the bulk, inviscid region is dependent on the rotational speed. It is also remarkable to see that all the fluid gathered along the axis flows in a form of rapidly rotating fluid column haying almost the same diameter as the bottom hole.

  • PDF

축류 압축기에서의 선회실속에 관한 3차원 수치해석 (A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor)

  • 최민석;오성환;기덕종;백제현
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

수직축을 중심으로 회전하는 직관과 정지한 곡관 내부의 발달하는 층류 유동의 유사성에 관한 수치적 연구 (A Numerical Study on the Similarity of the Developing Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Square Duct)

  • 이공희;백제현
    • 한국전산유체공학회지
    • /
    • 제6권1호
    • /
    • pp.21-30
    • /
    • 2001
  • A numerical study on the similarity of the developing laminar flows between in a straight duct rotating about an axis perpendicular to that of the duct and in a stationary curved duct was carried out. In order to clarify the analogy of two flows, dimensionless parameters K/sub LR/ = Re/(equation omitted) and Rossby number, Ro, in a rotating straight duct were used as a set corresponding to Dean number K/sub LC/ = Re/(equation omitted), and curvature ratio, λ, in a stationary curved duct. For the large values of Ro and λ, it is shown that the flow field satisfies the 'asymptotic invariance property', that is, there are strong quantitative similarities between the two flows such as flow patterns, friction factors, and maximum axial velocity magnitudes for the same values of K/sub LR/ and K/sub LC/ if they are correlated with dimensionless axial distances Z/sub R/ = z/(equation omitted) for a rotating duct flow and Z/sub C/ = z/(equation omitted) for a stationary curved duct flow.

  • PDF

영상처리 기법을 이용한 원통형 용기내의 회전유속의 측정 (Image Processing Technique for Rotational Velocity Measurements in a Circular Cylinder)

  • 김재원;엄정섭;임태규
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 1995
  • An experimental investigation has been made for flow in a circular cylinder with a rotating bottom disk. Flow system considered in this paper is a characteristic model of interior flows of an electric washing machine. Flows in a tub of an electric washing machine are driven by a rotating bottom disk called a pulsator. The simple and characteristic model was composed of a circular cylinder with impulsively rotating endwall disk and a viscous fluid in it. Rotational motion of the pulsator is periodic and alternative in rotation direction. The flow field in the interior region is governed by a horizontal boundary layer forms on the impulsively rotating disk. Experimental approach was accomplished by adopting an image processing technique for velocity measurements. Comprehensive details of the flow structure are presented. Also a meridional circulation is obtained by tracking image particles suspended in the fluid. Flow structure and data are successfully procured for this complex rotating flow field.

  • PDF

예선회가 존재하는 회전유동장의 불안정성 수치해석 (Numerical Instability Analysis of the Rotating Boundary-Layer flow Including Pre-Swirl)

  • 황영규;이윤용;이광원
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.415-423
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1, -0.5, and 0, using linear stability theory. Detailed numerical values of the disturbance wave number. wave frequency. azimuth angle. radius (Reynolds number, Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small fe and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.