• Title/Summary/Keyword: Quantum Logic

Search Result 62, Processing Time 0.028 seconds

Design and Simulation of an RSFQ 1-bit ALU (RSFQ 1-bit ALU의 디자인과 시뮬레이션)

  • 김진영;백승헌;강준희
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • We have designed and simulated an 1-bit ALU (Arithmetic Logic Unit) by using a half adder. An ALU is the part of a computer processor that carries out arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We constructed an 1-bit ALU by using only one half adder and three control switches. We designed the control switches in two ways, dc switch and NDRO (Non Destructive Read Out) switch. We used dc switches because they were simple to use. NDRO pulse switches were used because they can be easily controlled by control signals of SET and RESET and show fast response time. The simulation results showed that designed circuits operate correctly and the circuit minimum margins were +/-27%. In this work, we used simulation tools of XIC and WRSPICE. The circuit layouts were also performed. The circuits are being fabricated.

  • PDF

Development of an RSFQ 4-bit ALU

  • Kim, J.Y.;Baek, S.H.;Kim, S.H.;Jung, K.R.;Lim, H.Y.;Park, J.H.;Kang, J.H.;Han, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.14
    • /
    • pp.55-55
    • /
    • 2004
  • PDF

Development of Superconductive Arithmetic and Logic Devices (초전도 논리연산자의 개발)

  • Kang J. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Due to the very fast switching speed of Josephson junctions, superconductive digital circuit has been a very good candidate fur future electronic devices. High-speed and Low-power microprocessor can be developed with Josephson junctions. As a part of an effort to develop superconductive microprocessor, we have designed an RSFQ 4-bit ALU (Arithmetic Logic Unit) in a pipelined structure. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The RSFQ 1-bit block of ALU used in this work consisted of three DC current driven SFQ switches and a half-adder. We successfully tested the half adder cell at clock frequency up to 20 GHz. The switches were commutating output ports of the half adder to produce AND, OR, XOR, or ADD functions. For a high-speed test, we attached switches at the input ports to control the high-speed input data by low-frequency pattern generators. The output in this measurement was an eye-diagram. Using this setup, 1-bit block of ALU was successfully tested up to 40 GHz. An RSFQ 4-bit ALU was fabricated and tested. The circuit worked at 5 GHz. The circuit size of the 4-bit ALU was 3 mm ${\times}$ 1.5 mm, fitting in a 5 mm ${\times}$ 5 mm chip.

  • PDF

Development of an RSFQ 4-bit ALU (RSFQ 4-bit ALU 개발)

  • Kim J. Y.;Baek S. H.;Kim S. H.;Jung K. R.;Lim H. Y.;Park J. H.;Kang J. H.;Han T. S.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.104-107
    • /
    • 2005
  • We have developed and tested an RSFQ 4-bit Arithmetic Logic Unit (ALU) based on half adder cells and de switches. ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We have simulated the circuit by using Josephson circuit simulation tools in order to reduce the timing problem, and confirmed the correct operation of the designed ALU. We used simulation tools of $XIC^{TM},\;WRspice^{TM}$, and Julia. The fabricated 4-bit ALU circuit had a size of $\3000{\ cal}um{\times}1500{\cal}$, and the chip size was $5{\cal} mm{\times}5{\cal}mm$. The test speeds were 1000 kHz and 5 GHz. For high-speed test, we used an eye-diagram technique. Our 4-bit ALU operated correctly up to 5 GHz clock frequency. The chip was tested at the liquid-helium temperature.

  • PDF

Study of the Superconductive Pipelined Multi-Bit ALU (초전도 Pipelined Multi-Bit ALU에 대한 연구)

  • Kim, Jin-Young;Ko, Ji-Hoon;Kang, Joon-Hee
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.109-113
    • /
    • 2006
  • The Arithmetic Logic Unit (ALU) is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. We have developed and tested an RSFQ multi-bit ALU constructed with half adder unit cells. To reduce the complexity of the ALU, We used half adder unit cells. The unit cells were constructed of one half adder and three de switches. The timing problem in the complex circuits has been a very important issue. We have calculated the delay time of all components in the circuit by using Josephson circuit simulation tools of XIC, $WRspice^{TM}$, and Julia. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. The fabricated 1-bit, 2-bit, and 4-bit ALU circuits were tested at a few kilo-hertz clock frequency as well as a few tens giga-hertz clock frequency, respectively. For high-speed tests, we used an eye-diagram technique. Our 4-bit ALU operated correctly at up to 5 GHz clock frequency.

  • PDF

Multi-Valued Logic Device Technology; Overview, Status, and Its Future for Peta-Scale Information Density

  • Kim, Kyung Rok;Jeong, Jae Won;Choi, Young-Eun;Kim, Woo-Seok;Chang, Jiwon
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2020
  • Complementary metal-oxide-semiconductor (CMOS) technology is now facing a power scaling limit to increase integration density. Since 1970s, multi-valued logic (MVL) has been considered as promising alternative to resolve power scaling challenge for increasing information density up to peta-scale level by reducing the system complexity. Over the past several decades, however, a power-scalable and mass-producible MVL technology has been absent so that MVL circuit and system implementation have been delayed. Recently, compact MVL device researches incorporating multiple-switching characteristics in a single device such as 2D heterojunction-based negative-differential resistance (NDR)/transconductance (NDT) devices and quantum-dot/superlattices-based constant intermediate current have been actively performed. Meanwhile, wafer-scale, energy-efficient and variation-tolerant ternary-CMOS (T-CMOS) technology has been demonstrated through commercial foundry. In this review paper, an overview for MVL development history including recent studies will be presented. Then, the status and its future research direction of MVL technology will be discussed focusing on the T-CMOS technology for peta-scale information processing in semiconductor chip.

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.

Syntheses and realization of Quaternary Galois Field Sum-Of-Product(QGFSOP) expressed 1-variable functions Permutational Literals (치환리터럴에 의한 Quaternary Galois Field Sum-Of-Product(QGFSOP)형 1-변수 함수의 합성과 실현)

  • Park, Dong-Young;Kim, Baek-Ki;Seong, Hyeun-Kyeong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.710-717
    • /
    • 2010
  • Even though there are 256 possible 1-qudit(1-variable quantum digit) functions in quaternary logic, the most useful functions are 4!=24 ones capable of representing in QGFSOP expressions by possible permuting of 0,1,2, and 3. In this paper, we propose a permutational literal(PL) representation and a QPL(Quaternary PL) gate which use the operands of a multiplicand A and an augend D in $Ax^C$+D(GF4) operation as a control variable of multi-cascaded PLs. And we also present new PL synthesis algorithms to synthesize QGFSOP expressed 24 (1-qudit) functions by applying three PL operators as ab(mutual permutation), + D(addition), and XA (multiplication). Finally architectures, circuits, and a CMOS implementation to realize proposed PL synthesis algorithms for $Ax^C$+D(GF4) functions are presented.

High-Speed Digital/Analog NDR ICs Based on InP RTD/HBT Technology

  • Kim, Cheol-Ho;Jeong, Yong-Sik;Kim, Tae-Ho;Choi, Sun-Kyu;Yang, Kyoung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.154-161
    • /
    • 2006
  • This paper describes the new types of ngative differential resistance (NDR) IC applications which use a monolithic quantum-effect device technology based on the RTD/HBT heterostructure design. As a digital IC, a low-power/high-speed MOBILE (MOnostable-BIstable transition Logic Element)-based D-flip flop IC operating in a non-return-to-zero (NRZ) mode is proposed and developed. The fabricated NRZ MOBILE D-flip flop shows high speed operation up to 34 Gb/s which is the highest speed to our knowledge as a MOBILE NRZ D-flip flop, implemented by the RTD/HBT technology. As an analog IC, a 14.75 GHz RTD/HBT differential-mode voltage-controlled oscillator (VCO) with extremely low power consumption and good phase noise characteristics is designed and fabricated. The VCO shows the low dc power consumption of 0.62 mW and good F.O.M of -185 dBc/Hz. Moreover, a high-speed CML-type multi-functional logic, which operates different logic function such as inverter, NAND, NOR, AND and OR in a circuit, is proposed and designed. The operation of the proposed CML-type multi-functional logic gate is simulated up to 30 Gb/s. These results indicate the potential of the RTD based ICs for high speed digital/analog applications.