• Title/Summary/Keyword: Probabilistic variation

Search Result 172, Processing Time 0.021 seconds

Uncertainty and Sensitivity Analysis of Time-Dependent Deformation in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 시간에 따른 변형의 확률 해석 및 민감도 해석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.149-159
    • /
    • 1998
  • The reasonable prediction of time-dependent deformation of prestressed concrete(PSC) box girder bridges is very important for accurate construction as well as good serviceability. The long-term behavior is mostly influenced by the probabilistic characteristic of creep and shrinkage. This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box been taken into account - model uncertainty, parameter variation and environmental condition. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measure are examined to quantify the sensitivity of the outputs of each of the input variables. These are rank correlation coefficient(RCC), partical rank correlation coefficient(PRCC) and standardiozed rank regression coefficient(SRRC) computed on the ranks of the observations. Three creep and shrinkage models - i. e., ACI model. CEB-FIP model and the model in Korea Highway Bridge Specification - are studied. The creep model uncertainy factor and the relative humidity appear to be the most dominant factors with regard to the model output uncertainty.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

Development of Evaluation Model for ITS Project using the Probabilistic Risk Analysis (확률적 위험도분석을 이용한 ITS사업의 경제성평가모형)

  • Lee, Yong-Taeck;Nam, Doo-Hee;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.95-108
    • /
    • 2005
  • The purpose of this study is to develop the ITS evaluation model using the Probabilistic Risk Analysis (PRA) methodology and to demonstrate the goodness-of-fit of the large ITS projects through the comparative analysis between DEA and PRA model. The results of this study are summarized below. First, the evaluation mode] using PRA with Monte-Carlo Simulation(MCS) and Latin-Hypercube Sampling(LHS) is developed and applied to one of ITS projects initiated by local government. The risk factors are categorized with cost, benefit and social-economic factors. Then, PDF(Probability Density Function) parameters of these factors are estimated. The log-normal distribution, beta distribution and triangular distribution are well fitted with the market and delivered price. The triangular and uniform distributions are valid in benefit data from the simulation analysis based on the several deployment scenarios. Second, the decision making rules for the risk analysis of projects for cost and economic feasibility study are suggested. The developed PRA model is applied for the Daejeon metropolitan ITS model deployment project to validate the model. The results of cost analysis shows that Deterministic Project Cost(DPC), Deterministic Total Project Cost(DTPC) is the biased percentile values of CDF produced by PRA model and this project need Contingency Budget(CB) because these values are turned out to be less than Target Value(TV;85% value), Also, this project has high risk of DTPC and DPC because the coefficient of variation(C.V) of DTPC and DPC are 4 and 15 which are less than that of DTPC(19-28) and DPC(22-107) in construction and transportation projects. The results of economic analysis shows that total system and subsystem of this project is in type II, which means the project is economically feasible with high risk. Third, the goodness-of-fit of PRA model is verified by comparing the differences of the results between PRA and DEA model. The difference of evaluation indices is up to 68% in maximum. Because of this, the deployment priority of ITS subsystems are changed in each mode1. In results. ITS evaluation model using PRA considering the project risk with the probability distribution is superior to DEA. It makes proper decision making and the risk factors estimated by PRA model can be controlled by risk management program suggested in this paper. Further research not only to build the database of deployment data but also to develop the methodologies estimating the ITS effects with PRA model is needed to broaden the usage of PRA model for the evaluation of ITS projects.

Fragility Analysis of A Scaled Model of Reinforced Concrete Column in Accordance with Similitude Law (상사법칙이 적용된 철근콘크리트 기둥 축소모형의 지진 취약도 분석)

  • Park, Dong Uk;Jeon, Bub Gyu;Kim, Nam Sik;Park, Jamin;Cho, Jae-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2017
  • Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.

Permeability Evaluation of OPC and GGBFS Concrete with Cold Joint (콜드조인트를 가진 OPC 및 GGBFS 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Moon, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2015
  • Concrete, as a porous media, has permeability and it is considered as a major parameter for durability evaluation. Cold joint caused by delayed placing of concrete accelerates water permeation and intrusion of harmful ions. In the paper, concrete specimens containing GGBFS (Ground Granulated Blast Furnace Slag) and OPC (Ordinary Portland Cement) are prepared with cold joint section, and water permeability and water flow at the age of 91 days are measured for 2 weeks. Sound concrete with GGBFS shows decreased permeability to 89% for sound concrete with OPC and 0.86 of decreasing ratio is evaluated in GGBFS concrete with cold joint. Through WPT (Water Penetration Test), the effects of mineral admixture and cold joint on water permeability are evaluated, and variation in water behavior via cold joint is analyzed through probabilistic method as well.

The Stochastic Behavior of Soil Water and the Impact of Climate Change on Soil Water (토양수분의 추계학적 거동과 기후변화가 미치는 영향)

  • Han, Su-Hee;Ahn, Jae-Hyun;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.433-443
    • /
    • 2009
  • For the better understanding of the temporal characteristics of soil water, this study is to suggest a stochastic soil water model and to apply it for impact assessment of climate change. The loss function is divided into 3 stages for more specified comprehension of the probabilistic behavior of soil water, and especially, the soil water model considering the stochastic characteristics of precipitation is developed in order to consider the variation of climatic factors. The simulation result of soil water model confirms that the proposed soil water model can re-generate the observation properly, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. Moreover, with the simulation results with a climate change scenario, it can be predicted that the future soil water will have higher variations than present soil water.

Automatic fire detection system using Bayesian Networks (베이지안 네트워크를 이용한 자동 화재 감지 시스템)

  • Cheong, Kwang-Ho;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we propose a new vision-based fire detection method for a real-life application. Most previous vision-based methods using color information and temporal variation of pixel produce frequent false alarms because they used a lot of heuristic features. Furthermore there is also computation delay for accurate fire detection. To overcome these problems, we first detected candidated fire regions by using background modeling and color model of fire. Then we made probabilistic models of fire by using a fact that fire pixel values of consecutive frames are changed constantly and applied them to a Bayesian Network. In this paper we used two level Bayesian network, which contains the intermediate nodes and uses four skewnesses for evidence at each node. Skewness of R normalized with intensity and skewnesses of three high frequency components obtained through wavelet transform. The proposed system has been successfully applied to many fire detection tasks in real world environment and distinguishes fire from moving objects having fire color.

Uncertainty Analysis of Long-Term Behavior of Reinforced Concrete Members Under Axial Load (축력을 받는 철근콘크리트조 부재 장기거동 예측의 불확실성 분석)

  • Yoo, Jae-Wook;Kim, Seung-Nam;Yu, Eun-Jong;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.343-350
    • /
    • 2014
  • A probabilistic construction stage analysis using the Monte Carlo Simulation was performed to address the effects of uncertainty regarding the material properties, environmental factors, and applied forces. In the previous research, creep and shrinkage were assumed to be completely independent random variables. However, because of the common influencing factors in the material models for the creep and shrinkage estimation, strong correlation between creep and shrinkage can be presumed. In this paper, an Monte Carlo Simulation using CEB-FIB creep and shrinkage equations were performed to actually evaluate the correlation coefficient between two phenomena, and then another Monte Carlo Simulation to evaluate the statistical properties of axial strain affected by partially correlated random variables including the material properties, environmental factors, and applied forces. The results of Monte Carlo Simulation were compared with measured strains of a column on a first story in a 58-story building. Comparison indicated that the variation due to the uncertainty related with the material properties were most severe. And measured strains was within the range of mean+standard deviation.

Proposal of new ground-motion prediction equations for elastic input energy spectra

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.485-510
    • /
    • 2014
  • In performance-based seismic design procedures Peak Ground Acceleration (PGA) and pseudo-Spectral acceleration ($S_a$) are commonly used to predict the response of structures to earthquake. Recently, research has been carried out to evaluate the predictive capability of these standard Intensity Measures (IMs) with respect to different types of structures and Engineering Demand Parameter (EDP) commonly used to measure damage. Efforts have been also spent to propose alternative IMs that are able to improve the results of the response predictions. However, most of these IMs are not usually employed in probabilistic seismic demand analyses because of the lack of reliable Ground Motion Prediction Equations (GMPEs). In order to define seismic hazard and thus to calculate demand hazard curves it is essential, in fact, to establish a GMPE for the earthquake intensity. In the light of this need, new GMPEs are proposed here for the elastic input energy spectra, energy-based intensity measures that have been shown to be good predictors of both structural and non-structural damage for many types of structures. The proposed GMPEs are developed using mixed-effects models by empirical regressions on a large number of strong-motions selected from the NGA database. Parametric analyses are carried out to show the effect of some properties variation, such as fault mechanism, type of soil, earthquake magnitude and distance, on the considered IMs. Results of comparisons between the proposed GMPEs and other from the literature are finally shown.

A Probabilistic Study on the Engineering Characteristics of Soil in Korea by the Unified Soil Classification (통일분류(統一分類)에 의한 우리나라 토질(土質) 공학적(工學的) 특성(特性)에 관한 확률론적(確率論的) 연구(硏究))

  • Chung, Chul Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.115-123
    • /
    • 1989
  • This paper probabilisticly analyses the variance of the soil parameters on kinds of soil by conducting statistical analysis through the Unified Soil Classification System. Data used are the result of soil test which the Korea National Housing Corporation conducted in 176 sites of 74 cities throughout the country during the past 13 years from 1974 to 1986. In this paper, soil parameters such as natural water contents, specific gravity of soil particle, Atterberg limits, N-values, unconfined compression strength, compression index and shear strength parameter etc., is analysed. The result of the analysis is as follows. 1) The variance in physical properties of the soil is, when compared with coefficient of variation which is statistical variable, comparatively small. 2) The shear strength parameter is proved to be about 40% and compression index is about 32%. 3) The variance in specific gravity is 0.87-2.49% in granular soil and 0.91~5.03% in cohesive soil respectively. So, the degree of the variance is very small.

  • PDF