• 제목/요약/키워드: Prey-predator

검색결과 185건 처리시간 0.017초

BIFURCATIONS AND FEEDBACK CONTROL IN AN EXPLOITED PREY-PREDATOR SYSTEM WITH STAGE STRUCTURE FOR PREY

  • Kar, T.K.;Pahari, U.K.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1193-1204
    • /
    • 2011
  • In the present paper we consider a differential-algebraic prey-predator model with stage structure for prey and harvesting of predator species. Stability and instability of the equilibrium points are discussed and it is observed that the model exhibits a singular induced bifurcation when the economic profit is zero. It indicates that the zero economic profit brings impulse, i.e. rapid expansion of the population and the system collapses. For the purpose of stabilizing the system around the positive equilibrium, a state feedback controller is designed. Finally, numerical simulations are given to show the consistency with theoretical analysis.

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.831-844
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권3호
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

DYNAMICS OF A PREY-PREDATOR INTERACTION WITH HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE AND HARVESTING OF PREY

  • BHATTACHARYYA, ANINDITA;MONDAL, ASHOK;PAL, A.K.;SINGH, NIKHITA
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.1199-1215
    • /
    • 2022
  • This article aims to study the dynamical behaviours of a two species model in which non-selective harvesting of a prey-predator system by using a reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis is used. A system of two ordinary differential equations(ODE's) has been proposed and analyzed with the predator functional response to prey density is considered as Hassell-Varley type functional responses to study the dynamics of the system. Positivity and boundedness of the system are studied. We have discussed the existence of different equilibrium points and stability of the system at these equilibrium points. We also analysed the system undergoes a Hopf-bifurcation around interior equilibrium point for a various parametric values which has very significant ecological impacts in this work. Computer simulation are carried out to validate our analytical findings. The biological implications of analytical and numerical findings are discussed critically.

긴털이리응애(Amblyseius Womersleyi Schicha)의 간자와응애에대한 기능반응 및 개체군 억제에 관한 연구 (Functional response and suppression of prey population if Amblyseius womersleyi Schicha(Acarina:Phytoseiidae) to Tetranychus Kanzawai Kishi-da(Acarina: Tetranychidae))

  • 김도익;이승찬
    • 한국응용곤충학회지
    • /
    • 제35권2호
    • /
    • pp.126-131
    • /
    • 1996
  • 긴털이리응애와 간자와응애에 대한 포식량과 억제능력을 알아보기 위하여 실내에서 강낭콩 잎을 이용하여 시허뫄 결과는 다음과 같다. 긴털이리응애는 간자와응애의 난, 유충, 약충의 먹이밀도가 증가함에 따라 포식량은 점차 증가하였으나 그의 증가율은 감소하는 Holling의 기능 반응공석 제 II형과 일치하는 경향이었다. 긴털이리응애의 간자와응애에 대한 억제능력은 $25^{\circ}C$에서 32:1의 비율까지, $20^{\circ}C$에서 16:1 비율까지 억제하였으나 $15^{\circ}C$에서는 어느 비율에서도 억제를 하지 못하였다.

  • PDF

NONSELECTIVE HARVESTING OF A PEY-PREDATOR COMMUNITY WITH

  • Ghosh, Dipanwita;Sarkar, A.K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.823-834
    • /
    • 1999
  • The present paper deals with the problem of nonselective harvesting in a partly infecte prey and predator system in which both the suseptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to inverstigate the global properties of the system.

초기 개체군 밀도가 포식자-피식자 생태계 안정성에 미치는 영향 (Exploring the Stability of Predator-Prey Ecosystem in Response to Initial Population Density)

  • 조정희;이상희
    • 한국시뮬레이션학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-6
    • /
    • 2013
  • 생태계는 다양한 환경 내에 다양한 생물종이 서로 상호작용하고 있는 복잡계이다. 이들 상호작용은 계층적 먹이그물 구조를 이루고 있는데, 많은 경우, 포식자-피식자-식물의 관계를 보여준다. 포식자-피식자 경쟁관계는 시공간적으로 일어나는 현상이기 때문에, 초기시점에서의 개체들 분포와 밀도가 어떠한가는 매우 중요한 정보를 담고 있다. 본 연구에서는, 이들 세 단계 계층구조의 생태계를 간단한 격자 모델로 구성하고 이 모델을 사용하여 각 종의 초기 개체군 밀도가 변함에 따라 생태계 안정성이 어떻게 변하는지를 연구하였다. 격자공간은 $L{\times}L$ 크기의 L(=100) 사각격자로 구성되었다. 식물의 초기 밀도는 0.2로 고정하였다. 시뮬레이션 결과는, 포식자의 밀도가 0.4이하, 피식자의 밀도가 0.5이하일 때 두 종이 공존하는 것을 보여 주었으며, 포식자 밀도가 0.5이상, 피식자 밀도가 0.6 이상의 조건에서는 두 종이 멸종하는 것을 보여 주었다. 공존과 멸종의 두 상태가 접하는 영역의 조건에서는 확률적으로 공존하기도하고 멸종하기도 하는 비선형성이 강한 행동을 보여 주었다. 본 연구를 통해 초기종의 밀도가 생태계 안정성에 매우 중요한 역할을 한다는 것을 알 수 있었다.

EFFECT OF MATURATION AND GESTATION DELAYS IN A STAGE STRUCTURE PREDATOR PREY MODEL

  • Banerjee, Sandip;Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1379-1393
    • /
    • 2010
  • In this paper, a stage-structured predator prey model (stage structure on prey) with two discrete time delays has been discussed. The two discrete time delays occur due to maturation delay and gestation delay. Linear stability analysis for both non-delay as well as with delays reveals that certain thresholds have to be maintained for coexistence. Numerical simulation shows that the system exhibits Hopf bifurcation, resulting in a stable limit cycle.

BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY

  • Ma, Zhihui;Tang, Haopeng;Wang, Shufan;Wang, Tingting
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.43-58
    • /
    • 2018
  • In this paper, we study a delayed predator-prey system with Holling type IV functional response incorporating the effect of habitat complexity. The results show that there exist stability switches and Hopf bifurcation occurs while the delay crosses a set of critical values. The explicit formulas which determine the direction and stability of Hopf bifurcation are obtained by the normal form theory and the center manifold theorem.

INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.21-29
    • /
    • 2009
  • This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

  • PDF