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DYNAMICS OF A PREY-PREDATOR INTERACTION WITH
HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE AND

HARVESTING OF PREY

ANINDITA BHATTACHARYYA, ASHOK MONDAL, A.K. PAL∗ AND NIKHITA SINGH

Abstract. This article aims to study the dynamical behaviours of a two
species model in which non-selective harvesting of a prey-predator sys-
tem by using a reasonable catch-rate function instead of usual catch-per-
unit-effort hypothesis is used. A system of two ordinary differential equa-
tions(ODE’s) has been proposed and analyzed with the predator functional
response to prey density is considered as Hassell-Varley type functional re-
sponses to study the dynamics of the system. Positivity and boundedness
of the system are studied. We have discussed the existence of different
equilibrium points and stability of the system at these equilibrium points.
We also analysed the system undergoes a Hopf-bifurcation around interior
equilibrium point for a various parametric values which has very significant
ecological impacts in this work. Computer simulation are carried out to
validate our analytical findings. The biological implications of analytical
and numerical findings are discussed critically.
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1. Introduction

It is well recognized that the theoretical study of predator–prey systems in
mathematical ecology has an elongated history starting with the revolutionary
work of Lotka in 1925 [10] and Volterra in 1926 [26] on one prey and one preda-
tor species. These principles of prey- predator system have remained valid till
today and many theoretical ecologists adhere to these principles. In popula-
tion dynamics, a functional response plays an important role which involves the
change in the density of prey attached per unit time per predator as the prey
density changes. Throughout last 10 years, there has been a wide analysis on

Received May 31, 2021. Revised July 31, 2021. Accepted October 28, 2021. ∗Corresponding
author.

© 2022 KSCAM.
1199



1200 A. Bhattacharyya, A. Mondal, A.K. Pal and N. Singh

the dynamics of predator–prey models with the diverse functional responses in
the literature, (see [3, 5, 8, 9, 12, 13, 14, 16] and references therein)

Much different progress has been made in this direction by Mondal et al. [15,
17, 18, 22], Wang et al. [27] and Pathak et al [23]. Most of these research works
comprise of ordinary differential equations. Naji and Mustaf [21] used Holling
Type II response function to describe the dynamics of eco- epidemiological model
with non- linear incidence rate where the uniqueness, boundedness and existence
of the system was evaluated. Rao et al. [24] discussed the effect of environmental
noise on the dynamical behaviour of a Hassell- Varley type prey- predator model
with stochastic perturbations on the death rate of predator’s population and on
the growth rate of prey’s population. Here, the stochastic differential equations
were developed and analysed that stochastic perturbations with sufficiently large
noise intensity may harm the species population but stochastic perturbation with
small noise intensity is manageable.

There are increasing data which verifies that harvesting has a significant im-
pact on dynamic evolution of a population species. Some of them are the re-
search works done by S. Chakraborty et al. [2] and Das et al [4]. Hassell in 1969
introduced the mutual interference between the prey and predator population.
The dynamical behaviour of non- selective harvesting prey- predator model with
Hassell- Varley type functional response incorporating the impulsive effects by
using the fixed-point theory based on monotone operator was studied by Li et al.
[11]. Wang in 2014 [28] founded the modelling of prey- predator model with non-
selective harvesting and Hassell- Varley type functional response including the
time delay. One of the classical prey- predator model was proposed by Leslie-
Gower which was modified by Yuan et al. [29] with saddle node- Hopf bifurca-
tion involving time- delay and prey- harvesting. In 2019, Raymond et al. [25]
proposed and analysed a mathematical model to study the dynamical behaviour
of two- prey and one- predator fishery model incorporating the Holling Type II
response function. Here, all the three species encountered harvesting and it was
investigated that if the harvesting rate of prey’s species is greater than their
intrinsic growth rate, then the three species would be extinct with time. Thus,
to achieve the sustainability of the population, one should never exceed the har-
vesting rate of species than their intrinsic growth rate. In population dynamics,
the most vital element is functional response (or trophic function) because of
its far-reaching implications. The predator’s functional response is defined as
the number of preys eaten per predator per unit of time. Michaelis and Menten
in 1913, proposed and analyzed the functional response, g(X) = cX

(m+X) where
X represents the prey density at time t, c(> 0) and m(> 0) is the maximal
growth rate of the species and half capturing saturation constant, respectively.
Holling in 1959 [7] used the same function as one of the predator functional re-
sponse. Hence, it is now known as Holling Type II function or Michaelis- Menten
function. During the last ten years, there has been extensive investigation on
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dynamical behavior of prey- predator system with Holling Type II response func-
tion. A predator- dependent functional response can be roughly defined as the
per capita rate of predation depends on both the numbers of prey and predator.
A predator- dependent functional response is called ratio- dependent only when
it is a function of the ratio of prey to predator’s densities. Arditi and Ginzburg
[1] formulated a Holling Type II response [19, 30, 31, 32] function of the form:

g(X,Y ) =
c(XY )

m+ (XY )
=

cX

(mY +X)
(1)

where X and Y represents the prey and predator population, respectively.
The positive constants c and m denote the capturing rate and half capturing
saturation constant, respectively. Hassell and Varley [6] investigated a general
prey- predator system where the predator- dependent functional response is in
a different way:

g(X,Y ) =
cX

(mY γ +X)
(2)

This equation is known as Hassell- Varley type functional response and γ ∈
(0, 1) is called the Hassell- Varley constant. In the typical prey- predator inter-
action where predators do not form a group and the system is ratio dependent
prey- predator system, γ = 1. For terrestrial predators that form a tight number
of groups γ = 1

2 and for aquatic predators that form a tight number of groups
γ = 1

3 . It can also be observed that ratio- dependent model and prey- dependent
model with γ = 1 or γ = 0 are the special cases of Hassell- Varley type functional
response, respectively.

In this paper, we give the detailed hopf bifurcation analysis by calculating the
bifurcation near the coexistence equilibrium point for system (4) with respect to
Hassel-Verley constant, harvesting coefficient and intra-specific competition of
predator as bifurcating parameters. We derive the parameter conditions for the
existence of predator free and coexistence equilibria and the parameter regions
in which both the predator-extinction equilibrium and coexistence equilibrium
are simultaneously stabilized. This paper is organized as follows. Section 2,
the basic mathematical model is introduced together with basic considerations.
Boundedness and positivity of the solutions of the proposed model are estab-
lished in Section 3. The extinction criteria of the predator-prey population are
discussed in Section 4. Section 5 deals with all possible equilibrium points of the
model and their feasibility conditions. Stability of the model at various equi-
librium points is discussed in Section 6. In Section 7, a detailed study of the
Hopf- bifurcation around the interior equilibrium is carried out. Computer sim-
ulations are carried out to validate our analytical findings numerically in Section
8. Section 9 contains the general discussion and biological significance of our
analytical findings.
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2. The basic mathematical model

Before we introduce the model, we have made the following assumptions to
construct the proposed mathematical model which also indicates the biological
relevance of it:

(1) We have proposed a system consisting of a single prey and single predator
species with biomass P (T ) and Q(T ) respectively.

(2) It is known that in the absence of predation and harvesting, then the
prey population biomass grows according to logistic law. So, the term
RP (1 − P

K ) is the growth of the prey, where R is the intrinsic growth
rate of the prey.

(3) The effect of the predation is to reduce the prey growth rate by a
term proportional to the prey and predator populations; this is the
A1P (T )Q(T ) term incorporated by Holling Type II response function
with Hassell- Varley type predation model where A1 is the capturing
rate of prey by predator.

(4) The prey’s contribution to the predator growth rate is A1P (T )Q(T )
which is proportional to the available prey as well as the size of the
predator population incorporated by Holling Type II response function
with Hassell- Varley type predation model.

(5) In the absence of any prey for sustenance, the predator’s death rate
results in inverse decay, that is the term DQ where D is the death rate
and δQ2 is the death rate of predator due to intra-specific competition.

By considering the underlying assumptions of the incorporated populations,
the dynamics of the model can be represented by the following set of non- linear
ordinary differential equations:

dP

dT
= RP (1− P

K
)− 1

β

A1PQ

MQγ + P
− q1EP

M1E +M2P

dQ

dT
=

A1PQ

MQγ + P
−DQ− δQ2

(3)

with P (0) = P0 > 0, Q(0) = Q0 > 0.
All the model parameters are assumed to be positive constants with following

interpretation:

R : is the intrinsic growth rate of prey.
K : denotes the carrying capacity of prey.
A1 : is the capturing rate of prey by predator.
q1 : denotes the catchability coefficient.
E : is the effort applied to harvest the prey.
M : stands for half capturing saturation constant.
M1 and M2: stands for suitable constants.
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β : denotes the yield constant.
γ : is called Hassell- Varley constant.
D : is the death rate of predator population.
δ : represents the death rate due to intra- species competition.

Let us non-dimensionalize the system (3) with the following scaling:

x =
P

K
, Q = y

(
K

M

) 1
γ

and t = RT

Then the system (3) takes the form (after some simplification):

dx

dt
= x(1− x)− axy

x+ yγ
− hx

g + x

dy

dt
=

bxy

x+ yγ
− dy − cy2

(4)

with x(0) = x0 > 0, y(0) = y0 > 0,
where the parameters are as follows:

a =
A1

(
K
M

) 1
γ

KRβ
, b =

A1

R
, c =

δ

R

(
K

M

) 1
γ

, d =
D

R
, g =

M1E

M2K
, h =

q1E

RKM2
.

3. Positivity and boundedness

Positivity and boundedness of a model guarantee that the model is biologically
well behaved. For positivity of the system (4), we have the following theorem.

Theorem 3.1. All solutions of the system (4) that start in R2
+ remain positive

forever.

Proof. From the first equation of system (4), we get

x(t) = x(0) exp

[∫ t

0

{1− x(θ)− ay(θ)

yγ(θ) + x(θ)
− h

g + x(θ)
}dθ
]
⇒ x(t) > 0

From the second equation of system (4), we get

y(t) = y(0) exp

[∫ t

0

{ bx(θ)

yγ(θ) + x(θ)
− d− cy(θ)}dθ

]
⇒ y(t) > 0

This proves the theorem.
□

Theorem 3.2. All solutions of the system (4) that start in R2
+ are uniformly

bounded.
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Proof. Since
dx

dt
≤ x(1− x)

we have

lim
t→∞

supx(t) ≤ 1

Now we assume,
W̃1 = x+

a

b
y

Therefore

dW̃1

dt
=

{
x(1− x)− axy

x+yγ − hx
g+x

}
+ a

b

{
bxy
x+yγ − dy − cy2

}
≤ −(x+ ad

b y) + 2x

∴ dW̃1

dt
≤ 2x−RW̃1, where R = min{1, d},

Hence dW̃1

dt
+ RW̃1 ≤ 2x ≤ 2, for large t, since limt→∞ supx(t) ≤ 1.

Applying a theorem on differential inequalities, we obtain

0 ≤ W̃1(x, y) ≤
2

R
+
W̃1(x(0), y(0))

eRt
⇒ 0 ≤ W̃1 ≤ 2

R
as t→ ∞.

Thus, all solutions of system (4) enter into the region

Γ1 =

{
(x, y) : 0 ≤ W̃1 <

2

R
+ ϵ for any ϵ > 0

}
.

This proves the theorem. □

4. Extinction scenarios

This section deals with the conditions for which both the species of the un-
derlying system (4) will be going to extinct in long run. Here we shall use the
following fact (for large time t):

x(t) ≤ 1.

Theorems 4.1 show the extinction of prey population and Theorem 4.2 deals
with the extinction of predator population.

Theorem 4.1. If h > (g + 1), then lim
t→∞

x(t) = 0.
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Proof. We have

dx

dt
≤ x− hx

g+x

= x
(
1− h

g+x

)
dx

dt
≤ x

g+x (g + 1− h)

≤ x
g (g + 1− h)

< 0, provided h > (g + 1)

Hence, lim sup
t→∞

x(t) = 0 if h > (g + 1). □

Theorem 4.2. If d > b, then lim
t→∞

y(t) = 0.

Proof. We have

dy

dt
≤ bxy

x+yγ − dy

= by

1+ yγ

x

− dy

dy

dt
≤ y(b− d)

< 0, provided b < d

Hence, lim sup
t→∞

y(t) = 0 if b < d. □

Remark: So, when death rate is grater than capturing rate of prey by predator,
evidently the predator population will be going to extinct.

5. Boundary equilibria and their stability

5.1. Existence of the boundary equilibrium points. The persistence of the
system (4) is determined by the information collected through the computations
of boundary equilibria and their stability. The system (4) has two boundary
equilibrium points namely E0(0, 0) and E1(x1, 0). The point E0(0, 0) always
exist. Now, we show the existence of other boundary equilibrium points as
follows:

5.1.1. Existence of E1(x1, 0). Here, x1 is the positive solution of the following
equation:

x1 =
−(g − 1)±

√
(g − 1)2 − 4(h− g)

2
Remarks: Case-1: When g > 1 and h − g < 0, then x1 has one positive and
one negative value.

Case-2: When g < 1 and h−g < 0, then x1 has one positive and one negative
value.
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Case-3: When g > 1, h − g > 0 and (g − 1)2 > 4(h − g), then x1 has two
negative values.

Case-4: When g < 1, h − g > 0 and (g − 1)2 > 4(h − g), then x1 has two
positive values.

In the rest of the paper we have considered at least one positive values of x1.

5.1.2. Existence of E∗(x∗, y∗). The Interior equilibrium point E∗(x∗, y∗) of
system (4) is given by

x∗ =
y∗γ(d+ cy∗)

b− d− cy∗

y∗γ(d+ cy∗)

b− d− cy∗
+
ay∗(b− d− cy∗)

by∗γ
+

h

g + y∗γ(d+cy∗)
y∗−d−cy∗

= 1.
(5)

This interior equilibrium exists only when y∗ > d
b−c where b > c.

6. Stability Analysis

We now study the local stability of the prescribed equilibrium points. The
variational matrix corresponding to system (4) is:

J(x, y) =

[
v11 v12
v21 v22

]

where
v11 = 1− 2x− ayγ+1

(x+yγ)2 − gh
(g+x)2 , v12 = −ax2+axyγ(1−γ)

(x+yγ)2 ,

v21 = byγ+1

(x+yγ)2 , v22 = bx2+bxyγ(1−γ)
(x+yγ)2 − d− 2cy.

The variational matrix corresponding to E0 is:

J(E0) =

[
1− h

g 0

0 −d

]
All the eigen-values of JE0

are: 1− h
g and −d.

Theorem 6.1. The trivial equilibrium E0 is locally asymptotically stable (LAS)
if h

g > 1.

The variational matrix corresponding to E1 is:

J(E1) =

[
1− 2x1 − gh

(g+x1)2
−a

0 b− d

]
.

The eigen-values are: 1− 2x1 − gh
(g+x1)2

and b− d.
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Theorem 6.2. The axial equilibrium point E1 is locally asymptotically stable if
and only if 2x1 + gh

(g+x1)2
> 1 and b < d.

The variational matrix corresponding to E∗ is :

J(E∗) =

[
m11 m12

m21 m22

]
,

where
m11 = x∗

{
−1 + ay∗

(x∗+y∗γ)2 + h
(g+x∗)2

}
,

m12 = −x∗
{
ax∗+ay∗γ(1−γ)

(x∗+y∗γ)2

}
,

m21 = by∗γ+1

(x∗+y∗γ)2 ,

m22 = − bγx∗y∗γ

(x∗+y∗γ)2 − cy∗

The characteristic equation is:

λ2 + P1λ+ P2 = 0. (6)
where P1 = −(m11 +m22), P2 = m11m22 −m12m21.

Theorem 6.3. The interior equilibrium point E∗ is locally asymptotically stable
if and only if (m11 +m22) < 0 and m11m22 > m12m21.

7. Hopf Bifurcation

Characteristic equation of system (6) at E∗(x∗, y∗) is given by

λ2 + P1(γ)λ+ P2(γ) = 0, (7)
where

P1(γ) = −x∗
{
−1 + ay∗

(x∗+y∗γ)2 + h
(g+x∗)2

}
+ bγx∗y∗γ

(x∗+y∗γ)2 + cy∗,

P2(γ) = −x∗
{
−1 + ay∗

(x∗+y∗γ)2 + h
(g+x∗)2

}{
bγx∗y∗γ

(x∗+y∗γ)2 + cy∗
}

+ x∗
{
ax∗+ay∗γ(1−γ)

(x∗+y∗γ)2

}
by∗γ+1

(x∗+y∗γ)2 .

In order to see the instability of system (4), let us consider γ as bifurcation
parameter. For this purpose let us first state the following theorem:

Theorem 7.1. Hopf Bifurcation Theorem [20]
If P1(γ) and P2(γ) are the smooth functions of γ in an open interval about

γ∗ ∈ R such that the characteristic equation (7) has a pair of imaginary eigen
values λ = r1(γ) ± ir2(γ) with r1(γ) and r2(γ) ∈ R so that they become purely
imaginary at γ = γ∗ and dr1

dk |γ=γ∗ ̸= 0, then a Hopf-bifurcation occurs around
E∗ at γ = γ∗ (i.e, a stability change of E∗(x∗, y∗) accompanied by the creation
of a limit cycle around γ = γ∗).
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Theorem 7.2. System (6) possesses a Hopf-bifurcation around E∗ when γ passes
through γ∗ provided P1(γ

∗) = 0.

Proof. At γ = γ∗, the characteristic equation (7) can be written as λ2+P2(γ) =
0. The roots of this equation are λ1 = i

√
P2 and λ2 = −i

√
P2. Thus there exists

a pair of purely complex eigen values. Also, P1 and P2 are smooth functions
of γ. So, for γ in a neighborhood of γ∗, the roots have of the forms: λ1 =
r1(γ) + ir2(γ) and λ2 = r1(γ)− ir2(γ), where ri(γ) are real functions of γ in an
open neighbourhood of γ∗ for i = 1, 2.

Next, let us verify the transversatility condition:

d

dγ
(Reλi(γ))

∣∣∣∣
γ=γ∗

̸= 0, i = 1, 2. (8)

Substituting λ(γ) = r1(γ) + ir2(γ) in the characteristic equation (7), we get

(r1(γ) + ir2(γ))
2
+ P1(γ) (r1(γ) + ir2(γ)) + P2(γ) = 0 (9)

Differentiating both sides with respect to γ, we get

2 (r1(γ) + ir2(γ)) (ṙ1(γ) + iṙ2(γ)) + P1(γ) (ṙ1(γ) + iṙ2(γ))+

Ṗ1(γ) (r1(γ) + ir2(γ)) + Ṗ2(γ) = 0
(10)

Equating real and imaginary parts from both sides, we get

2r1ṙ1 − 2r2ṙ2 + P1ṙ1 + Ṗ1r1 + Ṗ2 = 0 (11)

2r1ṙ2 + 2r2ṙ1 + P1ṙ2 + Ṗ1r2 = 0 (12)
Let us rewrite (11) as follows:

ṙ1(2r1 + P1) + ṙ2(−2r2) + Ṗ1r1 + Ṗ2 = 0

⇒ ṙ1S1 − ṙ2S2 + S3 = 0 (13)
Also, rewrite (12) as follows:

ṙ1(2r2) + ṙ2(2r1 + P1) + Ṗ1r2 = 0
⇒ ṙ1S2 + ṙ2S1 + S4 = 0

(14)

where S1 = (2r1 + P1) ̸= 2r1, S2 = 2r2, S3 = Ṗ1r1 + Ṗ2 and S4 = Ṗ1r2.
Multiplying (13) by S1 and (14) by S2 and then adding we have

(
S2
1 + S2

2

)
ṙ1 + S1S3 + S2S4 = 0 ⇒ ṙ1 = − (S1S3 + S2S4)

S2
1 + S2

2

(15)

At γ = γ∗:
Case 1: r1 = 0 , r2 =

√
P2. Then S1 ̸= 0, S2 = 2

√
P2, S3 = Ṗ2 and S4 = Ṗ1

√
P2.

∴ S1S3 + S2S4 ̸= 0.
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Case 2: r1 = 0 , r2 = −
√
P2. Then S1 ̸= 0, S2 = −2

√
P2, S3 = Ṗ2 and

S4 = −Ṗ1

√
P2.

∴ S1S3 + S2S4 ̸= 0.

Hence it is proved by Theorem 7.2. □

Remarks: Similarly, we consider harvesting coefficient, intra-specific competi-
tion of predator as bifurcating parameters, statements and proofs are similar as
in this theorem.

8. Numerical simulation

In this section, Extensive numerical simulations have been performed for var-
ious values of parameters to determine the the dynamics of the system. We
present computer simulations of different solutions of the system (4) using MAT-
LAB. This study provides stability analysis of each of the equilibrium points and
occurrence of Hopf-bifurcation of the system.

First we take the parameters as a = 1.7, γ = 0.35, h = 0.1, g = 0.4, b =
0.9, d = 0.1, c = 0.3. Then conditions are satisfied, and hence E∗(0.1901, 0.3259, )
exists. Also the conditions of Theorem 6.3 are satisfied. Consequently, E∗ is
locally asymptotically stable. The stable behaviour of x, y with t and the phase
portrait are presented in Figures 1.
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Figure 1. Local asymptotic stability of E∗, where x∗ =
0.1901, y∗ = 0.3259.

In this context it is mentioned that the Hassell- Varley constant, γ has an
important role on the dynamics the underlying system. The system (4) under-
goes a Hopf-bifurcation around E∗ at γ∗ = 0.7416. Fig. 2(First Fig.) show
the stable behaviour of E∗(x∗, y∗) in time of the underlying system respectively
when the value of γ is less than critical value γ∗ (taking γ = 0.5 < γ∗ = 0.7416).
Also Fig. 2(Second Fig.) depict the unstable behaviour of x∗, y∗ in time of the
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system (4) respectively, when the value γ is greater than γ∗ (taking γ = 0.8 >
γ∗ = 0.7416), the other parameters remain same as before. The corresponding
Hopf-bifurcation diagrams with respect to the parameter γ are presented in Fig.
3.
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Figure 2. Stable behaviour of E∗ when γ = 0.5 < γ∗ = 0.7416
and occurrence of oscillatory behaviour of E∗ when γ = 0.8 >
γ∗ = 0.7416.

Figure 3. Bifurcation diagram for the parameter γ with γ∗ =
0.7416

.

In this context it is mentioned that the biological parameter, h(harvesting
coefficient) has an important role on the dynamics the underlying system. The
system (4) undergoes a Hopf-bifurcation around E∗ at h∗ = 0.2696. Fig. 4(First
Fig.) show the stable behaviour of E∗(x∗, y∗) in time of the underlying sys-
tem respectively when the value of h is less than critical value h∗ (taking h =
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0.2 < h∗ = 0.2696). Also Fig. 4(Second Fig.) depict the unstable behaviour of
x∗, y∗ in time of the system (4) respectively, when the value h is greater than
h∗ (taking h = 0.3 > h∗ = 0.2696), the other parameters remain same as before.
The corresponding Hopf-bifurcation diagrams with respect to the parameter h
are presented in Fig. 5.
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x

Figure 4. Stable behaviour of E∗ when h = 0.2 < h∗ = 0.2696
and occurrence of oscillatory behaviour of E∗ when h = 0.3 >
h∗ = 0.2696.

Figure 5. Bifurcation diagram for the parameter h with h∗ =
0.2696

.

In this context also it is mentioned that the biological parameter, c(intra-
species competition) has an important role on the dynamics the underlying sys-
tem. The system (4) undergoes a Hopf-bifurcation around E∗ at c∗ = 0.0246.
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Fig. 6(First Fig.) show the stable behaviour of E∗(x∗, y∗) in time of the un-
derlying system respectively when the value of c is greater than critical value
c∗ (taking c = 0.06 > c∗ = 0.0246). Also Fig. 4(Second Fig.) depict the unstable
behaviour of x∗, y∗ in time of the system (4) respectively, when the value c is
less than c∗ (taking c = 0.001 < c∗ = 0.0246), the other parameters remain
same as before. The corresponding Hopf-bifurcation diagrams with respect to
the parameter c are presented in Fig. 7.
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Figure 6. Stable behaviour of E∗ when c = 0.06 > c∗ = 0.0246
and occurrence of oscillatory behaviour of E∗ when c = 0.001 <
c∗ = 0.0246.

Figure 7. Bifurcation diagram for the parameter c with c∗ =
0.0246

.
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9. Conclusion

Due to the confinement of prey in the small arenas of laboratory system, it
is often observed that coexistence of prey and predator population exist in the
natural system but not in the laboratory system. This problem has been solved
by some mathematicians as well as ecologists who have suggested that direct
predation only is not enough for the study of prey- predator model and that the
effect of harvesting should be considered to observe the coexistence of prey and
predator’s population. This could be one of the possible reasons to observe the
coexistence.

In this paper, we have investigated the significant effect of harvesting on
a prey- predator model with Holling type-II response function incorporated
Hassell- Varley type predation model. This study helps us to state that, one of
the possible ways to observe the coexistence of prey and predator is by consider-
ing the influence of harvesting on the proposed model. Positivity and bounded-
ness of the system are shown in section 3. Extinction criteria of the populations
are discussed in section 4. Also, stability behaviour of the equilibrium points
are studied and validated by computer simulations.

Here we have analyzed all the boundary equilibrium points extensively. The
the predator free point will be stable only when 2x1 + gh

(g+x1)2
> 1 and when

predator’s death rate is more than the interaction between prey and predator.
The interior equilibrium points E∗ also exist under certain conditions. Further
we have studied the local stability behaviour of the interior equilibrium point
E∗. Numerical simulations suggest the co-existence of two species for some hypo-
thetical set of parameteric values. The important mathematical findings for the
dynamical behaviour of the underlying model are also numerically verified using
MATLAB. The most important equilibrium point i.e. as interior equilibrium
point satisfying existence criteria are shown graphically. The Hopf-bifurcation
condition has been derived in terms of γ as bifurcation parameter. Here it is
observed that as γ increases the system exhibits oscillatory behaviour around
coexistence equilibrium E∗. Also, occurrence of Hopf- bifurcations at interior
equilibrium points under the different parameters such as h and c have been
reported in Figures (4,5,6,7) and each of these bifurcation parameters has an
important role on the dynamics of the system.

Finally, our model can be applicable in various fields of ecological as well as
epidemiological systems. Further studies are required to analyze the dynamics
of more realistic but complex systems such as considering different response
functions and also applying time delays in different species.
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