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EFFECT OF MATURATION AND GESTATION DELAYS IN A

STAGE STRUCTURE PREDATOR PREY MODEL

SANDIP BANERJEE∗, B. MUKHOPADHYAY AND R. BHATTACHARYYA

Abstract. In this paper, a stage-structured predator prey model (stage
structure on prey) with two discrete time delays has been discussed. The
two discrete time delays occur due to maturation delay and gestation delay.
Linear stability analysis for both non-delay as well as with delays reveals
that certain thresholds have to be maintained for coexistence. Numerical
simulation shows that the system exhibits Hopf bifurcation, resulting in a
stable limit cycle.
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1. Introduction

The study of single population ecological models with stage-structure have
started in the ’golden age’ of ecology through the works of Alfred Lotka and
Vito Volterra [1]. Mackendrick [2] introduced age while describing the dynam-
ics of a one-sex population model. Subsequent research have incorporated the
dynamics of interaction into age-structured models. There are numerous eco-
logical examples where size or age plays a dominant role on the dynamics of
interacting species. The fact that predators do not consume prey of all ages and
sizes indiscriminately is supported by a number of field studies. Most of the
existing examples of age-dependent predation are from the fish community [3].
Another example include the wolves on Isle Royale [4] which preferentially hunt
very young or very old moose.

The role of time delays on ecosystem models has been investigated by dif-
ferent researchers with variable outcomes. Early work emphasized an inverse

Received February 9, 2010. Revised February 19, 2010. Accepted March 27, 2010.
∗Corresponding author.

c© 2010 Korean SIGCAM and KSCAM.

1379



1380 Sandip Banerjee, B. Mukhopadhyay and R. Bhattacharyya

relationship between time delay and local stability [5,6]. Later research, consid-
ering time delays and stage structure established that time delays can have both
stabilizing and/or destabilizing effect [7-21]. Aiello and Freedman [15] studied a
single species stage-structured model with discrete time delay and obtained the
existence of a global attractor around the positive equilibrium which indicates
that stage-structure is unable to generate the sustained oscillation in popula-
tion concentration frequently observed in nature. They further studied the same
model with self-dependent maturity time and derived lower and upper bounds
of positive solutions [16]. However, from their analysis in [22], Arino et.al. con-
cluded that stage-structured models with stage-dependent maturation delay can
explain the phenomenon of periodic oscillation that are often observed in nature.
Zhang et.al. [18] studied a predator-prey model with stage structure on prey pop-
ulation and obtained the necessary and sufficient condition for permanence or
extinction. Song et.al. [19,20] dealt with two-species competitive models that in-
corporate optimal harvesting and stage-structure together. Xu et.al. [23] looked
after the stability and persistence criteria of a delayed predator-prey model with
stage-structure on the predator species. Gourley and Kuang [24] studied a ro-
bust predator-prey model with stage-structure and constant maturation delay;
they have shown that for a dynamic resource, there exists an interval of the de-
lay parameter which is capable of generating oscillatory dynamics for the system
populations.

In the present paper, we study a stage-structured predator-prey model where
the prey population have two life stages, namely the juvenile(J) and the adult
(A). We incorporate the time required by the juvenile prey to become adult
(commonly known as the stage delay) and also the gestation time of the predator
species as two discrete time delays. We perform a stability analysis of the model
for both non-delay and delay systems and conclude that all three species will
coexist provided certain thresholds are achieved. Numerical simulations with
hypothetical set of data are carried out to support analytical results.

Section 2 shows the formulation of the mathematical model. Stability anal-
ysis for non-delay case, due to maturation time as well as gestation delay are
discussed in section 3. The analytical finding are supported by numerical simu-
lations in section 4. The paper ends with a discussion.

2. The model

The pioneering work of Aiello and Freedman [16] on a single species growth
model with stage structure have inspired many authors to study different kinds
of stage-structured models and some significant work was carried out. Motivated
by their work we have proposed a prey-predator model with stage-structure on
prey species with the help of delay differential equation as follows:

dJ

dt
= rA− re−d1T1A(t− T1)− d1J (1)
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dA

dt
= re−d1T1A(t− T1)− d2A− βAY (2)

dY

dt
= βA(t− T2)Y (t− T2)− d3Y − ηY 2 (3)

where J(t) and A(t) denote respectively, the densities of Juvenile and Adult
individual preys at time t; Y(t) denote the density of predator population at time
t, (r, d1, β, d2, η, d3 are positive constants, T1, T2 are non-negative constants).
The initial conditions for the system take the form

J(θ) = φ1(θ), A(θ) = φ2(θ), Y (θ) = φ3(θ) (4)

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0 (i = 1, 2, 3) (5)

where τ = max{T1, T2},Φ = (φ1, φ2, φ3) ∈ Ç([−τ, 0], R3
+0], the Banach space

of continuous functions, mapping the interval (−τ, 0) into R3
+0, where we define

R3
+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3} and R3

+ = {(x1, x2, x3) : xi > 0, i =
1, 2, 3} as the interior of R3

+0.
The following assumptions have been made to derive the model:
(i) The prey population: At any time t, the birth of the juvenile population

are proportional to the existing adult population with proportionality constant
r, which explains the first term of the first equation ( 1). We assume that those
juveniles (prey) born at time t − T1, survive to time T1, exist from juvenile
population and enter the mature population; hence the term re−d1T1A(t − T1)
in the first two equations, namely, ( 1) and (2); d1, d2 are the natural death rates
of the juvenile and adult prey population and β is the rate at which predator
kills adult prey population.

(ii)The predator population: We assume that the reproduction of predator
after predating the prey is not instantaneous but will be mediated by some
discrete time lag required for gestation of predator. Let this time be T2 and we
assume that the predator population Y are known in [-T2, 0]. This explains the
term βA(t− T2)Y (t− T2) in the third equation (3), d3 is the natural death and
η is the death rate due to intra-specific competition.

From (1) we get

dJ

dt
+ d1J(t) = rA(t)− re−d1T1A(t− T1)

= re−d1t
d

dt

(∫ t

t−T1

ed1σA(σ)dσ

)

⇒ J(t) = r

∫ t

t−T1

e−d1(t−σ)A(σ)dσ + e−d1t

(
J(0)− r

∫ 0

−T1

ed1σA(σ)dσ

)

For t ≥ T1, the first integral represents the juveniles that survived and settled
in the interval [t−T1]. For t ≥ T1, the second integral represents those juveniles
that existed initially and have turned into adult at age T1 and hence must be
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zero. This implies

J(0)− r

∫ 0

−T1

ed1σA(σ)dσ = 0

⇒ J(0) = r

∫ 0

−T1

ed1σA(σ)dσ

This makes the system ecologically sound and certifies the continuity of the
initial conditions. Therefore, we have

J(t) = r

∫ t

t−T1

e−d1(t−σ)A(σ)dσ (6)

Lemma 1. Solutions of system (1-3) with initial conditions (4) and (5) are
positive for all t ≥ 0.

Proof. Let [J(t), A(t), Y(t)] be the solution of the system. From (6), it is
obvious that J(t) > 0 for t ≥ 0. We now consider Y(t) in the interval [0, T2].
From equation (3) of the system we get

dY

dt
= βφ2(t− T2)φ3(t− T2)− d3Y − ηY 2

≥ −d3Y − ηY 2

since φ2(θ), φ3(θ) ≥ 0 for θ ∈ [−T2, 0]. Therefore a standard comparison argu-
ment shows

Y (t) ≥ Y (0)e−
∫
(d3+ηY )dt

That is, Y(t) >0 for t∈ [0, T2]. In the similar manner,

dA

dt
≥ −d2A− βAY

⇒ A(t) ≥ A(0)e−
∫
(d2+βY )dt

That is, A(t) > 0 for t∈ [0, T2]. In the similar manner we can treat the intervals
[T2, 2T2], [2T2, 3T2], ....,[nT2, (n + 1)T2], n ∈ ℵ. Thus, J(t), A(t) and Y(t) > 0
for t ≥ 0. ¤

Lemma 2. Positive solutions of system (1-3) with initial conditions (4) and (5)
are ultimately bounded.

Proof. Let [J(t), A(t), Y(t)] be the solution of the system (1-3) satisfying the
initial condition (4) and (5). Let ρ(t) = J(t) +A(t) + Y (t). Then

dρ

dt
= −[d1J + (d2 − r)A+ d3Y ]− βAY + βA(t− T2)Y (t− T2)− ηY 2

≤ −Mρ+ βA(t− T2)Y (t− T2), where M = min{d1, (d2 − r), d3}
⇒ dρ

dt
+Mρ ≤ βφ2(θ)φ3(θ) = M1(say)

⇒ ρ(t) ≤ M1

A
+

(
ρ(0)− M1

A

)
e−Mt
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Hence, the positive solution of the system (1-3) are ultimately bounded. ¤

3. Linear stability analysis

By setting J̇ = 0, Ȧ = 0, Ẏ = 0, in system (1-3), we get the equilibrium solu-
tions as
(i) (0,0,0)

(ii)J∗ = r(1−e−d1T1 ){βd3+η(re−d1T1−d2)
β2d1

, A∗ = βd3+η(re−d1T1−d2)
β2 , Y ∗ = re−d1T1−d2

β ;

provided r1e
−d1T1 > d2.

We now focus on the asymptotic stability of the unique nontrivial steady
state of the system, namely, (J∗, A∗, Y ∗) and linearize the system (1-3) about
(J∗, A∗, Y ∗) to determine the associated characteristic equation. The required
characteristic equation is
∣∣∣∣∣∣

−d1 − λ r − re−d1T1e−λT1 0
0 re−d1T1e−λT1 − re−d1T1 − λ −βA∗

0 βY ∗e−λT2 βA∗e−λT2 − βA∗ − ηY ∗ − λ

∣∣∣∣∣∣
= 0

⇒ (λ+ d1)[λ
2 + (2ηY ∗ + d3 − βA∗e−λT2 + βY ∗ + d2 − re−d1T1e−λT1)λ

+βY ∗(2ηY ∗ + d3) + d2 − re−d1T1e−λT1)(2ηY ∗ + d3 − βA∗e−λT2)] = 0

Clearly, one of the root of the above equation is −d1 (d1 > 0), so we only
concentrate on the roots of the second degree exponential polynomial equation
in λ, namely,

λ2 + (2ηY ∗ + d3 − βA∗e−λT2 + βY ∗ + d2 − re−d1T1e−λT1)λ

+(βY ∗(2ηY ∗ + d3) + d2 − re−d1T1e−λT1)(2ηY ∗ + d3 − βA∗e−λT2) = 0 (7)

Through the study of the sign of the real parts of roots of ( 7), we can perform
the local asymptotic stability analysis of the steady state (J∗, A∗, Y ∗). For that
we need to show that (J∗, A∗, Y ∗) is locally asymptotically stable iff all the roots
of ( 7) have negative real parts. Also its stability can be lost if roots are purely
imaginary, that is, if the roots cross the vertical axis.

We note that the steady state (J∗, A∗, Y ∗) depends on the time delay T1

implicitly, implying that the coefficients of the characteristic equation depend
explicitly (the term with e−d1T1) or implicitly, on T1, which creates a complexity
to the resolution of ( 7). Moreover, the analysis of the sign of the real part of the
eigenvalues becomes complicated owing to the presence of two delays, namely,
T1 and T2 in the characteristic equation and hence a direct approach cannot be
considered. Working on the line of Ruan [25], we will use a method consisting
of determining the stability of the steady state when one delay is equal to zero
and go on deducing conditions for the stability of the steady state when both
time delays are non-zero by using proper analytical arguments.
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3.1 Case I: T1 = 0,T2=0
In this case, the characteristic equation reduces to

(λ+ d1)[λ
2 − (r − d2 − βY ∗ + βA∗ − d3 − 2ηY ∗)λ

+(r − d2 − βY ∗)(βA∗ − d3 − 2ηY ∗) + β2A∗Y ∗] = 0 (8)

Proposition 1. Assume that
P1 d2η

(β+η)e−d1T1−β
< r < βd3−ηd2

(η(1−2e−d1T1 )

Then system (1-3) without delay will be locally asymptotically stable around E∗ =
(J∗, A∗, Y ∗).

For the values of the parameters taken from Table (1), one can see that condi-
tion (P1) is fulfilled. Biologically it means that the growth rate of prey juveniles
lies between two thresholds for the system to be asymptotically stable.

3.2 Case II: T1 > 0,T2=0
We now consider the case T1 > 0, T2 = 0 which is motivated by the fact there
is a maturity time from juvenile to adult which cannot be ignored and hence T1

cannot be zero. In this case, the characteristic equation will be

(λ+ d1)[λ
2 + (ηY ∗ + re−d1T1)λ+ βY ∗(ηY ∗ + βA∗) + d2ηY

∗

−e−λT1(re−d1T1λ+ rηY ∗e−d1T1)] = 0 (9)

Clearly, one root has a negative real part and the dynamics of the system will
be determined by the quadratic exponential polynomial equation in λ, which is
of the form

λ2 +A1λ+A2 + e−λT1(A3λ+A4) = 0 (10)

where

A1 = ηY ∗ + re−d1T1

A2 = βY ∗(ηY ∗ + βA∗) + d2ηY
∗

A3 = −re−d1T1 (11)

A4 = −rηY ∗e−d1T1

Clearly ( 7) reduces to ( 10) when T1 = 0 and the steady state is locally asymp-
totically stable when T1=0, assuming P1 to be true. Hence, as T1 increases,
the stability of the steady state can only be lost if pure imaginary roots appear.
Hence, we look for purely imaginary roots λ = ±iω, ω ∈ < of ( 10). Substituting
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λ = ±iω and separating the real and the imaginary parts we get

A4 cos(ωT1) +A3ω sin(ωT1) +A2 − ω2 = 0

−A4 sin(ωT1) +A3ω cos(ωT1) + ωA1 = 0

⇒ cos(ωT1) =
(A4 −A1A3)ω

2 −A2A4

A2
3ω

2 +A2
4

sin(ωT1) =
A3ω

3 + (A1A4 −A2A3)ω

A2
3ω

2 +A2
4

Squaring and adding we get,

ω4 + (A2
1 − 2A2 −A2

3)ω
2 +A2

2 −A2
4 = 0 (12)

Let

ψ(W ) ≡ W 2 + (A2
1 − 2A2 −A2

3)W +A2
2 −A2

4

where W = ω2. The function ψ has positive roots if and only if
A2

2 −A2
4 < 0 or

(A2
1 − 2A2 −A2

3)
2 ≥ 4(A2

2 −A2
4) ≥ 0 > A2

1 − 2A2 −A2
3

Without any loss of generality, let WP be the positive roots of ψ = 0 and let
ωP =

√
WP .

We note that the unique solution of θ ∈ [0, 2π] of

cos(ωT1) =
(A4 −A1A3)ω

2 −A2A4

A2
3ω

2 +A2
4

sin(ωT1) =
A3ω

3 + (A1A4 −A2A3)ω

A2
3ω

2 +A2
4

is

θ = cos−1[
(A4 −A1A3)ω

2
P −A2A4

A2
3ω

2
P +A2

4

]

if sin(θ) > 0, that is, if A3ω
2 +A1A4 −A2A3 > 0 and

θ = 2π − cos−1[
(A4 −A1A3)ω

2
P −A2A4

A2
3ω

2
P +A2

4

]

if A3ω
2 +A1A4 −A2A3 ≤ 0

We now define the two sequences

T 1,i
1,P =

1

ωP
[cos−1(

(A4 −A1A3)ω
2
P −A2A4

A2
3ω

2
P +A2

4

) + 2iπ]

T 2,i
1,P =

1

ωP
[2π − cos−1(

(A4 −A1A3)ω
2
P −A2A4

A2
3ω

2
P +A2

4

) + 2iπ]

Theorem 1. Let T ∗
1,P = T 1,i

1,P or T ∗
1,P = T 2,i

1,P , that is, T
∗
1,P represents an element

either of the sequence T 1,i
1,P or T 2,i

1,P , associated with ωP . Then the equation
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λ2+A1λ+A2+ e−λT1(A3λ+A4) = 0 has a pair of simple conjugate roots ±iωP

for T2 = T ∗
1,P which satisfies

sign{dRe(λ)

dT1
|T=T∗

1,P
} = sign{ψ′(ω2

P }

Furthermore, assuming the proposition P1 and P2 to be true and denoting T ∗
1 =

mini∈N {T 1,i
1,P , T

2,i
1,P }, it is concluded that the steady state (J∗, A∗, Y ∗) is locally

asymptotically stable if T1 < T ∗
1 and a Hopf-bifurcation occurs at (J∗, A∗, Y ∗)

when T1 = T ∗
1 iff ψ′(ω2

P ) > 0.

Proof. We prove the theorem by contradiction. Let ±iωP be a pair of purely
imaginary roots of ( 10) and let λ(T1) = φ(T1) + iω(T1) be the branch of roots
of ( 10), with φ(T ∗

1,P ) = 0 and ω(T ∗
1,P ) = ωP .

We assume that λ(T ∗
1,P ) is not a simple root of ( 10), then both ( 10) and

derivative of ( 10) share the same root, which implies

λ2 +A1λ+A2 + e−λT1(A3λ+A4) = 0

(2λ+A1 + {A3 − T1(A3λ+A4)}e−λT1)
dλ

dT1
− λ(A3λ+A4)e

−λT1 = 0 (13)

at λ = λ(T ∗
1,P ). Substituting λ = λ(T ∗

1,P ) = ω(T ∗
1,P ) = ωP in both the

equations and separating real and imaginary parts we get respectively,

−A3ω
2
P cos(ωPT

∗
1,P ) +A4ωP sin(ωPT

∗
1,P ) = 0

A4ωP cos(ωPT
∗
1,P ) +A3ω

2
P sin(ωPT

∗
1,P ) = 0 (14)

and

−A3ωP cos(ωPT
∗
1,P ) +A4 sin(ωPT

∗
1,P ) = A1ωP

A4 cos(ωPT
∗
1,P ) +A3ωP sin(ωPT

∗
1,P ) = ω2

P −A2 (15)

Considering the fact that ωP > 0 and using ( 14) and ( 15), we obtain A1 = 0 and
A2 = ω2

P . Since A1 = ηY ∗+re−d1T1 > 0 (using 11), we arrive at a contradiction.
Hence, we conclude that ±iωP are simple roots of ( 10).

From ( 10) and ( 13), we get (after simplification)

eλT1 = − A3λ+A4

λ2 +A1λ+A2(
dλ

dT1

)−1

=
(2λ+A1)e

λT1 +A3

λ(A3λ+A4)
− T1

λ

Eliminating eλT1 we get,

(
dλ

dT1

)−1

= − 2λ+A1

λ(λ2 +A1λ+A2)
+

A3

λ(A3λ+A4)
− T1

λ
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Then,
(

dλ

dT1

)−1

T1=T∗
1,P

= − −2iω −A1

i(A2 − ω2
P )ωP −A1ω2

P

+
A3

−A3ω2
P + iA4ωP

− T ∗
1,P

iωP

Consequently,

Re

(
dλ

dT1

)−1

T1=T∗
1,P

=
A2

1 − 2A2 + 2ω2
P

(A2 − ω2
P )

2 +A2
1ω

2
P

− A2
3

A2
3ω

2
P +A2

4

Now, A2
3ω

2
P +A2

4 = ω4
P + (A2

1 − 2A2)ω
2
P +A2

2 = (A2 − ω2
P )

2 +A2
1ω

2
P (using 12),

which gives

Re

(
dλ

dT1

)−1

T1=T∗
1,P

=
A2

1 − 2A2 −A2
3 + 2ω2

P

(A2 − ω2
P )

2 +A2
1ω

2
P

=
ψ′(ω2

P )

(A2 − ω2
P )

2 +A2
1ω

2
P

Since

sign

{
Re

(
dλ

dT1

)−1

T1=T∗
1,P

}
= sign

{
dRe(λ)

dT1
|T1=T∗

1,P

}

we get

sign

{
dRe(λ)

dT1
|T1=T∗

1,P

}
= sign

{
ψ′(ω2

P )
}

If ψ′(ωP
2) > 0, then sign

{
dRe(λ)
dT1

|T1=T∗
1,P

}
> 0. So the system will be lo-

cally asymptotically stable when T1 < T1,P
∗ and a Hopf bifurcation occurs at

(J∗, A∗, Y ∗) at T1 = T2,P
∗ iff ψ′(ωP

2) > 0 ¤

3.3 Case III: T1 > 0,T2 >0
We now state a result regarding the sign of the real parts of the roots of ( 7)

in order to study the local stability of the positive steady state (J∗, A∗, Y ∗) of
the system (1-3).

Proposition 2. If all roots of equation ( 7) have negative real parts for some
T1 > 0, then there exists a T ∗

2 (T1) > 0 such that all roots of equation ( 7) (that
is, with T2 > 0) have negative real parts when T2 < T ∗

2 (T1)

Considering the above proposition we can now state the following theorem:

Theorem 2. If we assume that all the hypothesis Pi, i = 1, 2 hold, Then for
any T1 ∈ [0, T ∗

1 ) (T ∗
1 having the same definition as in theorem 1 ), there exists

a T ∗
2 (T1) > 0 such that the positive steady state (J∗, A∗, Y ∗) of the system is

locally asymptotically stable when T1 ∈ [0, T ∗
1 )



1388 Sandip Banerjee, B. Mukhopadhyay and R. Bhattacharyya

Proof. Using theorem 1, we can say that all the roots of ( 7) have negative real
parts when T1 ∈ [0, T ∗

1 ) and by proposition (2) we can conclude that there exists
a T ∗

2 (T1) > 0 such that all roots of equation ( 7) have negative real parts when
T2 < T ∗

2 (T1). Hence, the steady state (J∗, A∗, Y ∗) of system (1-3) is locally
asymptotically stable when T1 ∈ [0, T ∗

2 (T1)). ¤
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Figure 1. Time evolution of the three populations with
T1=0.01 and T2 = 0. The parameter set is taken from Table
1.

4. Numerical illustration

We now numerically solve the equations with hypothetical set of parameter
values obtained, given in tabular form (Table 1).

Figure 1 shows the time evolution of the three populations when time of
maturity is very small (T1 = 0.01) and no gestation delay (that is, T2 = 0).
The juvenile population goes to extinction in this case. Figure 2A shows that
the three populations are asymptotically stable (T1 = 4, T2 = 0). However, if
the maturation time exists a threshold value (T1 = 5.T2 = 0), all the three
population becomes extinct. This is shown in figure 2B. The next three figures
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Figure 2. Time evolution of the three populations with T1 = 4
and T2 = 0. The parameter set is taken from Table 1.

Table 1. Parameter values used for numerical illustration.

Parameters Values
r (birth rate of juvenile prey population) 2.657

d1 (natural death rate of juvenile prey population) 0.225
d2 (natural death rate of adult prey population) 0.9

β (rate at which predator kills adult preys) 3.1
d3 (natural death rate of predator population) 0.7
η (death rate due to intra-specific competition) 0.8

give the time evolutions of the three populations when gestation delay is taken
into account. Figures 3A, 3B, 3C shows that the steady state is asymptotically
stable, though damped oscillation can be observed. In figure 3D, the solutions
are drawn in the (J,A,Y)-plane. The time delays are T1 = 4, T2 = 4. Oscillating
solutions are observed in figures 4A, 4B, 4C. As T2 increases through T2 = 5.5,
a periodic solution occurs (which is evident from Figure 4) which is the case
of Hopf-bifurcation. The importance of Hopf-bifurcation in this context is that
at the bifurcation point a limit cycle (Figure 4D) is formed around the fixed
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Figure 3. Time evolution of the three populations with T1 = 4
and T2 = 4. The parameter set is taken from Table 1.

point, thus resulting in stable periodic solutions. Figure5 shows that the system
becomes unstable when T2 crosses the value 5.5.

5. Discussion

In this paper, the effect of two time delays on the dynamical behavior of a
prey predator system with stage structure for prey has been studied. The two
delay term is due to maturity time from juvenile to adult stage for preys and
due to gestation delay. For non-delay case, the system is asymptotically stable
if the growth rate of the prey juveniles (that is, r) lies between two thresholds.
When there is no gestation delay (that is, T2 = 0), the maturity time plays an
important role in the dynamics of the system. For small maturity time of the
prey species, the juveniles cannot survive and goes to extinction. Also, if the
juveniles takes long time to mature, all the three species perish. In presence
of gestation delay (along with maturity delay), the system shows interesting
dynamics. Because of discrete time delay due to gestation of prey biomass by
their predators, an oscillatory behavior of both prey and predator populations
is noted. This indicates that seasonal effects on population models often lead to
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Figure 4. Time evolution of the three populations with T1 = 4
and T2 = 5.5. The parameter set is taken from Table 1.

synchronous solutions. However, the seasonality has an upper hand and is often
the generating force for the observed oscillatory behavior in population densities
[26]. When there is a question of selection between time delays and seasonality,
both of which may present in nature.

Inclusion of discrete time delay due to gestation of prey biomass by their
predators have ability to capture the oscillatory behavior of both prey and
predator populations. This strongly suggests that seasonal effects on popula-
tion models often lead to synchronous solutions. In addition, we may conclude
that when both seasonality and time delay are present and deserve consideration,
the seasonality is often the generating force for the often observed oscillatory be-
havior in population densities [26]. There may be some other causes behind the
oscillation of individual population density, but we have made an attempt to un-
derstand the oscillatory behavior by incorporating gestation delay in predators
growth equation. However, we regret our inability to represent the numerical
results with a real field data. The next challenging expansion of this work will
be to investigate whether the system (1-3) can admit chaotic behavior under pe-
riodic or almost periodic perturbations, especially by theoretical analysis, which
we propose as our future work.
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