DOI QR코드

DOI QR Code

BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY

  • Ma, Zhihui (School of Mathematics and Statistics Lanzhou University) ;
  • Tang, Haopeng (School of Mathematics and Statistics Lanzhou University) ;
  • Wang, Shufan (School of Mathematics and Computer Science Northwest University for Nationalities) ;
  • Wang, Tingting (School of Mathematics and Statistics Lanzhou University)
  • Received : 2016.11.11
  • Accepted : 2017.09.05
  • Published : 2018.01.01

Abstract

In this paper, we study a delayed predator-prey system with Holling type IV functional response incorporating the effect of habitat complexity. The results show that there exist stability switches and Hopf bifurcation occurs while the delay crosses a set of critical values. The explicit formulas which determine the direction and stability of Hopf bifurcation are obtained by the normal form theory and the center manifold theorem.

Keywords

References

  1. P. V. August, The role of habitat complexity and heterogeneity in structuring tropical mammal communities, Ecology 64 (1983), 1495-1507. https://doi.org/10.2307/1937504
  2. M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predatorprey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16 (2003), no. 7, 1069-1075. https://doi.org/10.1016/S0893-9659(03)90096-6
  3. N. Bairagi and D. Jana, On the stability and Hopf bifurcation of a delay-induced predator-prey system with habitat complexity, Appl. Math. Model. 35 (2011), no. 7, 3255-3267. https://doi.org/10.1016/j.apm.2011.01.025
  4. N. Bairagi and D. Jana, Age-structured predator-prey model with habitat complexity: oscillations and control, Dyn. Syst. 27 (2012), no. 4, 475-499. https://doi.org/10.1080/14689367.2012.723678
  5. S. S. Bell, Habitat complexity of polychaete tube caps: influence of architecture on dynamics of a meioepibenthic assemblage, J. Mar. Res. 43 (1985), 647-657. https://doi.org/10.1357/002224085788440358
  6. S. Bell, E. McCoy, and H. Mushinsky, Habitat Structure: The Physical Arrangement of Objects in Space, Chapman and Hall, London, 1991.
  7. P. A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing, SIAM J. Appl. Math. 63 (2003), no. 3, 889-904. https://doi.org/10.1137/S0036139901393494
  8. C. R. Canion and K. L. Heck, Effect of habitat complexity on predation success: reevaluating the current paradigm in seagrass beds, Mar. Ecol. Prog. Ser. 393 (2009), 37-46. https://doi.org/10.3354/meps08272
  9. C. Celik, The stability and Hopf bifurcation for a predator-prey system with time delay, Chaos Solitons Fractals 37 (2008), no. 1, 87-99. https://doi.org/10.1016/j.chaos.2007.10.045
  10. C. Celik, Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos Solitons Fractals 42 (2009), no. 3, 1474-1484. https://doi.org/10.1016/j.chaos.2009.03.071
  11. B. D. Deka, A. Patra, J. Tushar, and B. Dubey, Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system, Appl. Math. Model. 40 (2016), no. 11-12, 5793-5818. https://doi.org/10.1016/j.apm.2016.01.018
  12. P. Eklv, Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius), Can. J. Fish. Aquat. Sci. 54 (1997), 1520-1531. https://doi.org/10.1139/f97-059
  13. S. P. Ellner, Habitat structure and population persistence in an experimental community, Nature 412 (2001), 538-543. https://doi.org/10.1038/35087580
  14. H. I. Freedman, Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57, Marcel Dekker, Inc., New York, 1980.
  15. H. I. Freedman and R. M. Mathsen, Persistence in pr edator-prey systems with ratio-dependent predator influence, Bull. Math. Biol. 55 (1993), 817-827. https://doi.org/10.1007/BF02460674
  16. R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie-Gower predatorprey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl. 398 (2013), no. 1, 278-295. https://doi.org/10.1016/j.jmaa.2012.08.057
  17. J. Huang, S. Ruan, and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response, J. Differential Equations 257 (2014), no. 6, 1721-1752. https://doi.org/10.1016/j.jde.2014.04.024
  18. T. Huang and H. Zhang, Bifurcation, chaos and pattern formation in a space- and time-discrete predator-prey system, Chaos Solitons Fractals 91 (2016), 92-107. https://doi.org/10.1016/j.chaos.2016.05.009
  19. N. E. Humphries, H. Weimerskirchc, N. Queiroza, E. J. Southalla, and D. W. Simsa, Foraging success of biological Levy flights recorded in situ. Proc. Natl. Acad. Sci. 109 (2011), 7169-7174.
  20. D. Jana and N. Bairagi, Habitat complexity, dispersal and metapopulations: Macroscopic study of a predator-prey system, Ecol. Complex. 17 (2014), 131-139. https://doi.org/10.1016/j.ecocom.2013.11.006
  21. C. Ji, D. Jiang, and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009), no. 2, 482-498. https://doi.org/10.1016/j.jmaa.2009.05.039
  22. Y. Jia and P. Xue, Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. Real World Appl. 32 (2016), 229-241. https://doi.org/10.1016/j.nonrwa.2016.04.012
  23. W. Jiang and H. Wang, Hopf-transcritical bifurcation in retarded functional differential equations, Nonlinear Anal. 73 (2010), no. 11, 3626-3640. https://doi.org/10.1016/j.na.2010.07.043
  24. T. K. Kar and S. Jana, Stability and bifurcation analysis of a stage structured predator prey model with time delay, Appl. Math. Comput. 219 (2012), no. 8, 3779-3792. https://doi.org/10.1016/j.amc.2012.10.007
  25. M. Kot, Elements of mathematical ecology, Cambridge University Press, Cambridge, 2001.
  26. Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in twopatch environments, Math. Biosci. 120 (1994), no. 1, 77-98. https://doi.org/10.1016/0025-5564(94)90038-8
  27. C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations 254 (2013), no. 2, 879-910. https://doi.org/10.1016/j.jde.2012.10.003
  28. Y. Li and D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals 34 (2007), no. 2, 606-620. https://doi.org/10.1016/j.chaos.2006.03.068
  29. Y. Qu and J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dynam. 49 (2007), no. 1-2, 285-294. https://doi.org/10.1007/s11071-006-9133-x
  30. H. Smith, An introduction to delay differential equations with applications to the life sciences, Texts in Applied Mathematics, 57, Springer, New York, 2011.
  31. X. Song and Y. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect, Nonlinear Anal. Real World Appl. 9 (2008), no. 1, 64-79. https://doi.org/10.1016/j.nonrwa.2006.09.004
  32. Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005), no. 1, 1-21. https://doi.org/10.1016/j.jmaa.2004.06.056
  33. C. Sun, Y. Lin, and M. Han, Stability and Hopf bifurcation for an epidemic disease model with delay, Chaos Solitons Fractals 30 (2006), no. 1, 204-216. https://doi.org/10.1016/j.chaos.2005.08.167
  34. J. P. Tripathi, S. Tyagi, and S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul. 30 (2016), no. 1-3, 45-69. https://doi.org/10.1016/j.cnsns.2015.06.008
  35. X. Wang and J. Wei, Dynamics in a diffusive predator-prey system with strong Allee effect and Ivlev-type functional response, J. Math. Anal. Appl. 422 (2015), no. 2, 1447-1462. https://doi.org/10.1016/j.jmaa.2014.09.051
  36. H.-Y. Yang and Y.-P. Tian, Hopf bifurcation in REM algorithm with communication delay, Chaos Solitons Fractals 25 (2005), no. 5, 1093-1105. https://doi.org/10.1016/j.chaos.2004.11.085
  37. J. Ylikarjula, S. Alaja, J. Laakso, and D. Tesar, Effects of patch number and dispersal patterns on population dynamics and synchrony, J. Theor. Biol. 207 (2000), 377-387. https://doi.org/10.1006/jtbi.2000.2181