• 제목/요약/키워드: Positive solutions

검색결과 744건 처리시간 0.027초

Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function

  • Elsanosi, Mohammed Elnagi M.
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.65-71
    • /
    • 2019
  • This paper is concerned with the existence of positive solutions of the nonlinear Neumann boundary value problems $$\{u^{{\prime}{\prime}}+a(t)u={\lambda}b(t)f(u),\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$, where $a,b{\in}C[0,1]$ with $a(t)>0,\;b(t){\geq}0$ and the Green's function of the linear problem $$\{u^{{\prime}{\prime}}+a(t)u=0,\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$ may change its sign on $[0,1]{\times}[0,1]$. Our analysis relies on the Leray-Schauder fixed point theorem.

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].

LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS

  • Yang, Guangchong;Chen, Xia;Xiao, Lan
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.83-92
    • /
    • 2021
  • This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.

A Nonlinear Elliptic Equation of Emden Fowler Type with Convection Term

  • Mohamed El Hathout;Hikmat El Baghouri;Arij Bouzelmate
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.113-131
    • /
    • 2024
  • In this paper we give conditions for the existence of, and describe the asymtotic behavior of, radial positive solutions of the nonlinear elliptic equation of Emden-Fowler type with convection term ∆p u + 𝛼|u|q-1u + 𝛽x.∇(|u|q-1u) = 0 for x ∈ ℝN, where p > 2, q > 1, N ≥ 1, 𝛼 > 0, 𝛽 > 0 and ∆p is the p-Laplacian operator. In particular, we determine ${\lim}_{r{\rightarrow}}{\infty}\,r^{\frac{p}{q+1-p}}\,u(r)$ when $\frac{{\alpha}}{{\beta}}$ > N > p and $q\,{\geq}\,{\frac{N(p-1)+p}{N-p}}$.

OSCILLATION AND GLOBAL ATTRACTIVITY IN A PERIODIC DELAY HEMATOPOIESIS MODE

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.287-300
    • /
    • 2003
  • In this paper we shall consider the nonlinear delay differential equation (equation omitted) where m is a positive integer, ${\beta}$(t) and $\delta$(t) are positive periodic functions of period $\omega$. In the nondelay case we shall show that (*) has a unique positive periodic solution (equation omitted), and show that (equation omitted) is a global attractor all other positive solutions. In the delay case we shall present sufficient conditions for the oscillation of all positive solutions of (*) about (equation omitted), and establish sufficient conditions for the global attractivity of (equation omitted). Our results extend and improve the well known results in the autonomous case.

PHASE ANALYSIS FOR THE PREDATOR-PREY SYSTEMS WITH PREY DENSITY DEPENDENT RESPONSE

  • Chang, Jeongwook;Shim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.345-355
    • /
    • 2018
  • This paper looks into phase plane behavior of the solution near the positive steady-state for the system with prey density dependent response functions. The positive invariance and boundedness property of the solution to the objective model are proved. The existence result of a positive steady-state and asymptotic analysis near the positive constant equilibrium for the objective system are of interest. The results of phase plane analysis for the system are proved by observing the asymptotic properties of the solutions. Also some numerical analysis results for the behaviors of the solutions in time are provided.

POSITIVE SOLUTIONS FOR A THREE-POINT FRACTIONAL BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN WITH A PARAMETER

  • YANG, YITAO;ZHANG, YUEJIN
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.269-284
    • /
    • 2016
  • In this paper, we firstly use Krasnosel'skii fixed point theorem to investigate positive solutions for the following three-point boundary value problems for p-Laplacian with a parameter $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+{\lambda}f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1), λ > 0 is a parameter. Then we use Leggett-Williams fixed point theorem to study the existence of three positive solutions for the fractional boundary value problem $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1).

RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS IN $R^n$

  • Naito, Yuki
    • Journal of the Korean Mathematical Society
    • /
    • 제37권5호
    • /
    • pp.751-761
    • /
    • 2000
  • Symmetry properties of positive solutions for semilinear elliptic problems in n are considered. We give a symmetry result for the problem in the feneral case, and then derive various results for certain classes of demilinear elliptic equations. We employ the moving plane method based on the maximum principle on unbounded domains to obtain the result on symmetry.

  • PDF

POSITIVE RADIAL SOLUTIONS OF $DELTA U + LAMBDA F(U) 0$ ON ANNULUS

  • Bae, Soo-Hyun;Park, Sang-Don;Pahk, Dae-Hyeon
    • Journal of the Korean Mathematical Society
    • /
    • 제33권2호
    • /
    • pp.381-386
    • /
    • 1996
  • We consider the behavior of positive radial solutions (or, briefly, pp.r.s.) of the equation $$ (1.1) ^\Delta u + \lambda f(u) = 0 in\Omega, _u = 0 on \partial\Omega, $$ where $\Omega = {x \in R^n$\mid$A < $\mid$x$\mid$ < B}$ is an annulus in $R^n, n \geq 2, \lambda > 0 and f \geq 0$ is superlinear in u and satisfies f(0) = 0.

  • PDF