Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function

Mohammed Elnagi M. Elsanosi
Department of Mathematics, Faculty of Educations, University of Khartoum , Omdurman, Sudan
e-mail: mohdtoum@yahoo.com
Abstract. This paper is concerned with the existence of positive solutions of the nonlinear Neumann boundary value problems

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u=\lambda b(t) f(u), \quad t \in(0,1), \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $a, b \in C[0,1]$ with $a(t)>0, b(t) \geq 0$ and the Green's function of the linear problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u=0, \quad t \in(0,1), \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

may change its sign on $[0,1] \times[0,1]$. Our analysis relies on the Leray-Schauder fixed point theorem.

1. Introduction

Let $\lambda>0$ be a parameter. We study the existence of positive solutions of the following nonlinear Neumann boundary value problems (NBVPs)

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u=\lambda b(t) f(u), \quad t \in(0,1) \tag{1.1}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $a, b \in C[0,1]$ with $a(t)>0, b(t) \geq 0, f:[0, \infty) \rightarrow[0, \infty)$ is continuous with $f(0)>0$.

In the past few years, several methods have been used to study the nonlinear second-order NBVPs

$$
\left\{\begin{array}{l}
u^{\prime \prime}+m^{2} u=f(t, u), \quad t \in(0,1), \tag{1.2}\\
u^{\prime}(0)=u^{\prime}(1)=0,
\end{array}\right.
$$

Received September 17, 2017; revised October 24, 2018; accepted October 25, 2018. 2010 Mathematics Subject Classification: 34B15, 34B18, 34B27.
Key words and phrases: Neumann boundary value problems, sign-changing Green's function, Leray-Schauder fixed point theorem, positive solutions.
where $m \in\left(0, \frac{\pi}{2}\right)$. See, for example, the fixed point theorem in cones $[8,10,11$, 12], Leray-Schauder alternative principle with truncation technique [2], topological degree [8], shooting method [1], sub-supersolution method [6] and the references therein.

It is worth remarking that the key condition used in these papers is $0<m<\frac{\pi}{2}$, which guarantees the Green's function $K(t, s)$ is greater than 0 on $[0,1] \times[0,1]$, where

$$
K(t, s)= \begin{cases}\frac{\cos m(1-t) \cos m s}{m \sin m}, & 0 \leq s \leq t \leq 1 \tag{1.3}\\ \frac{\cos m(1-s) \cos m t}{m \sin m}, & 0 \leq t \leq s \leq 1\end{cases}
$$

is the Green's function of the linear problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+m^{2} u=0, \quad t \in(0,1) \tag{1.4}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

Meanwhile, let

$$
c:=\min _{(t, s) \in[0,1] \times[0,1]} K(t, s), \quad C:=\max _{(t, s) \in[0,1] \times[0,1]} K(t, s) .
$$

Define a cone

$$
\begin{equation*}
P:=\left\{u \in C[0,1]: \min _{t \in[0,1]} u(t) \geq \frac{c}{C}\|u\|\right\} \tag{1.5}
\end{equation*}
$$

where $\|u\|=\max _{t \in[0,1]} u(t)$. Now, Krasnoselskii's fixed point theorem [3, 7] can be used to prove the existence and multiplicity of positive solutions of the nonlinear problem (1.2).

However, if $m=\frac{\pi}{2}$, then it is easy to check $K(t, s)$ is at least 0 and may attain zeros at some $t \in[0,1] \times[0,1]$. Thus we can not define the cone P as (1.5) since $c=0$. In 2008, Graef, Kong and Wang [4], defined a new cone of the form

$$
P_{0}:=\left\{u \in C[0,1]: u(t) \geq 0 \text { on }[0,1], \int_{0}^{1} u(t) d t \geq C_{0}\|u\|\right\}
$$

(where C_{0} is some positive constant) to prove the existence of positive solutions. Motivated by above papers, the purpose here is to determine the values of λ for which there exists a positive solution of NBVPs (1.1) with sign-changing Green's function.

Our proof is based on the following Leray-Schauder fixed point theorem.
Lemma 1.1.([3, Leray-Schauder fixed point theorem]) Let X be a Banach space and $T: X \rightarrow X$ a completely continuous operator. Suppose that there exists a constant $M>0$, such that each solution $(x, \sigma) \in X \times[0,1]$ of

$$
x=\sigma T x, \quad \sigma \in[0,1], \quad x \in X
$$

satisfies $\|x\|_{X} \leq M$. Then T has a fixed point.
Remark 1.1. For some results on the second-order periodic boundary value problems with sign-changing Green's function, we refer the readers to Ma [9].

2. Main Results

Let $C[0,1]$ be the Banach space composed of all continuous real functions defined on $[0,1]$, which is equipped with the norm $\|u\|=\max _{t \in[0,1]}|u(t)|$.

We assume that:
(H1) $b \in C[0,1]$ with $b(t) \geq 0, t \in[0,1]$ and $a \in C[0,1]$ satisfies

$$
\left(\frac{\pi}{2}\right)^{2} \leq \min _{t \in[0,1]} a(t)<\max _{t \in[0,1]} a(t)<\pi^{2}
$$

Remark 2.1. Condition (H1) implies that the Green's function $G(t, s)$ of the linear problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+a(t) u=0, \quad t \in(0,1) \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

exists and may change its sign (Notice that there exist a lot of functions of a such that (H1) holds; see Example 3.1 below.)
(H2) $f:[0, \infty) \rightarrow[0, \infty)$ is continuous with $f(0)>0$;
(H3) There exists $h>1$ such that

$$
\int_{0}^{1} G^{+}(t, s) b(s) d s \geq h \int_{0}^{1} G^{-}(t, s) b(s) d s
$$

where G^{+}and G^{-}are the positive and negative parts of G , respectively.
Throughout the paper, we assume that

$$
f(u)=f(0), \quad \text { for } u \leq 0
$$

Lemma 2.1. Suppose that (H1), (H2) and (H3) hold. Let $0<\delta<1$. Then there exists a positive number $\bar{\lambda}$ such that for $0<\lambda<\bar{\lambda}$, the integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G^{+}(t, s) b(s) f(u(s)) d s \tag{2.1}
\end{equation*}
$$

has a positive solutions \bar{u}_{λ} with $\left\|\bar{u}_{\lambda}\right\| \rightarrow 0$ as $\lambda \rightarrow 0$, and $\bar{u}_{\lambda}(t) \geq \lambda \delta f(0) p(t)$, where

$$
p(t)=\int_{0}^{1} G^{+}(t, s) b(s) d s
$$

Proof. The proof is motivated by Hai [5]. Let $A: C[0,1] \rightarrow C[0,1]$ defined by

$$
(A u)(t)=\lambda \int_{0}^{1} G^{+}(t, s) b(s) f(u(s)) d s, \quad t \in[0,1]
$$

Then $A: C[0,1] \rightarrow C[0,1]$ is completely continuous and the fixed points of A are solutions of (2.1).

We shall apply Lemma 1.1 to prove that A has a fixed point for λ small. Let $\varepsilon>0$ be such that

$$
\begin{equation*}
f(u) \geq \delta f(0) \quad \text { for } \quad 0 \leq u \leq \varepsilon \tag{2.2}
\end{equation*}
$$

Suppose that $\lambda<\frac{\varepsilon}{2\|p\| \bar{f}(\varepsilon)}$, thus

$$
\begin{equation*}
\frac{\bar{f}(\varepsilon)}{\varepsilon}<\frac{1}{2 \lambda\|p\|} \tag{2.3}
\end{equation*}
$$

where $\bar{f}(t)=\max _{0 \leq s \leq t} f(s)$.
It follows from (H2) that

$$
\lim _{t \rightarrow 0^{+}} \frac{\bar{f}(t)}{t}=+\infty
$$

which together with (2.3) implies that there exists $A_{\lambda} \in(0, \varepsilon)$ such that

$$
\begin{equation*}
\frac{\bar{f}\left(A_{\lambda}\right)}{A_{\lambda}}=\frac{1}{2 \lambda\|p\|} \tag{2.4}
\end{equation*}
$$

Now, let $u \in C[0,1]$ and $\theta \in(0,1)$ be such that $u=\theta A u$. Then we have

$$
\begin{equation*}
|u(t)|=\left|\theta \lambda \int_{0}^{1} G^{+}(t, s) b(s) f(u(s)) d s\right| \leq \lambda p(t) \bar{f}(\|u\|), \quad t \in[0,1] \tag{2.5}
\end{equation*}
$$

and therefore

$$
\frac{\bar{f}(\|u\|)}{\|u\|} \geq \frac{1}{\lambda\|p\|}
$$

which implies that $\|u\| \neq A_{\lambda}$. Note that $A_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$. By Lemma 1.1, A has a fixed point \tilde{u}_{λ} with $\left\|\tilde{u}_{\lambda}\right\|_{\infty} \leq A_{\lambda}<\varepsilon$. Consequently, $\tilde{u}_{\lambda}(t) \geq \lambda \delta f(0) p(t), t \in[0,1]$, and the proof is completed.
Theorem 2.2. Let (H1), (H2) and (H3) hold. Then there exists a positive number λ^{*} such that (1.1) has a positive solution for $\lambda \in\left(0, \lambda^{*}\right)$.
Proof. Let $q(t)=\int_{0}^{1} G^{-}(t, s) b(s) d s$. (H3) implies that there exist positive numbers $\alpha, \gamma \in(0,1)$ such that

$$
\begin{equation*}
q(t)|f(s)| \leq \gamma p(t) f(0) \tag{2.6}
\end{equation*}
$$

for $s \in[0, \alpha], t \in[0,1]$. Fix $\delta \in(\gamma, 1)$ and let λ^{*} be such that

$$
\begin{equation*}
\left\|\tilde{u}_{\lambda}\right\|_{\infty}+\lambda \delta f(0)\|p\| \leq \alpha \tag{2.7}
\end{equation*}
$$

for $\lambda<\lambda^{*}$, where \tilde{u}_{λ} is given by Lemma 2.1, and

$$
\begin{equation*}
|f(x)-f(y)| \leq f(0) \frac{\delta-\gamma}{2} \tag{2.8}
\end{equation*}
$$

for $x, y \in[-\alpha, \alpha]$ with $|x-y| \leq \lambda^{*} \delta f(0)\|p\|$.
Let $\lambda<\lambda^{*}$. We look for a solution u_{λ} of (1.1) of the form $\tilde{u}_{\lambda}+v_{\lambda}$. Thus v_{λ} satisfies

$$
v_{\lambda}(t)=\lambda \int_{0}^{1} G(t, s) g(s) f\left(\tilde{u}_{\lambda}+v_{\lambda}\right) d s-\lambda \int_{0}^{1} G^{+}(t, s) b(s) f\left(\tilde{u}_{\lambda}\right) d s, t \in[0,1] .
$$

For each $w \in C[0,1]$, let $v=A w$ be the solution of

$$
v(t)=\lambda \int_{0}^{1} G(t, s) g(s) f\left(\tilde{u}_{\lambda}+w\right) d s-\lambda \int_{0}^{1} G^{+}(t, s) b(s) f\left(\tilde{u}_{\lambda}\right) d s, t \in[0,1] .
$$

Then $A: C[0,1] \rightarrow C[0,1]$ is completely continuous. Let $v \in C[0,1]$ and $\theta \in(0,1)$ be such that $v=\theta A v$. Then we have

$$
v(t)=\theta \lambda \int_{0}^{1} G(t, s) b(s) f\left(\tilde{u}_{\lambda}+v\right) d s-\theta \lambda \int_{0}^{1} G^{+}(t, s) b(s) f\left(\tilde{u}_{\lambda}\right) d s, t \in[0,1] .
$$

We claim that $\|v\| \neq \lambda \delta f(0)\|p\|$. Suppose on the contrary that $\|v\|=\lambda \delta f(0)\|p\|$. Then, by (2.7) and (2.8), we get

$$
\left\|\tilde{u}_{\lambda}+v\right\| \leq\left\|\tilde{u}_{\lambda}\right\|+\|v\| \leq \alpha
$$

and

$$
\left\|f\left(\tilde{u}_{\lambda}+v\right)-f\left(\tilde{u}_{\lambda}\right)\right\| \leq f(0) \frac{\delta-\gamma}{2}
$$

which together with (2.6) implies that

$$
\begin{equation*}
|v(t)| \leq \lambda \frac{\delta-\gamma}{2} f(0) p(t)+\lambda \gamma f(0) p(t)=\lambda \frac{\delta+\gamma}{2} f(0) p(t), t \in[0,1] \tag{2.9}
\end{equation*}
$$

In particular,

$$
\|v\| \leq \lambda \frac{\delta+\gamma}{2} f(0)\|p\|<\lambda \delta f(0)\|p\|
$$

a contradiction, and the claim is proved. By Lemma 2.1, A has a fixed point v_{λ} with $\left\|v_{\lambda}\right\| \leq \lambda \delta f(0)\|p\|$, Hence, v_{λ} satisfies (2.9) and, using Lemma 2.1, we obtain $u_{\lambda}(t) \geq \tilde{u}_{\lambda}(t)-v_{\lambda}(t) \geq \lambda \delta f(0) p(t)-\lambda \frac{\delta+\gamma}{2} f(0) p(t)=\lambda \frac{\delta-\gamma}{2} f(0) p(t), \quad t \in[0,1]$,
i.e., u_{λ} is a positive solution of (1.1). This completes the proof of Theorem 2.2.

3. Applications

Example 3.1. Let us consider the following nonlinear Neumann boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\left(\frac{2 \pi}{3}\right)^{2} u=\lambda\left(u^{3}-3 u^{2}+u \sin u+1\right), \quad t \in(0,1) \tag{3.1}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

It is well-known that the Green's function corresponding to (3.1) is given by

$$
G(t, s)=\frac{1}{A} \begin{cases}\cos \left(\frac{2 \pi}{3}(1-t)\right) \cos \left(\frac{2 \pi}{3}(s)\right), & 0 \leq s \leq t \leq 1 \\ \cos \left(\frac{2 \pi}{3}(1-s)\right) \cos \left(\frac{2 \pi}{3}(t)\right), & 0 \leq t \leq s \leq 1\end{cases}
$$

where $A=\frac{2 \pi}{3} \sin \frac{2 \pi}{3}=\frac{\sqrt{3} \pi}{3}>0, m=\frac{2 \pi}{3}$ is a constant, $\lambda>0$ is a parameter, $b(\cdot) \equiv 1$ and $f(u)=u^{3}-3 u^{2}+u \sin u+1$.

It is not difficult to check that conditions (H1) and (H2) are satisfied. Now, we need only to look for a constant $k>1$ such that (H3) holds. In fact, by simple computation, we get

$$
\begin{equation*}
\int_{0}^{1} G(t, s) d t=\left(\frac{3}{2 \pi}\right)^{2} \tag{3.2}
\end{equation*}
$$

$G(0,0)=\frac{2}{A} \cos \left(\frac{2 \pi}{3}\right)<0, G\left(0, \frac{1}{2}\right)=\frac{1}{A} \cos \left(\frac{\pi}{3}\right)>0$ and

$$
\int_{0}^{1} G^{+}(t, s) b(s) d s-\int_{0}^{1} G^{-}(t, s) b(s) d s=\int_{0}^{1} G(t, s) d s=\frac{1}{m^{2}}>0, \quad t \in[0,1] .
$$

Thus, there exists a constant $\varepsilon>0$ sufficiently small such that

$$
\int_{0}^{1} G^{+}(t, s) b(s) d s-\int_{0}^{1} G^{-}(t, s) b(s) d s \geq \varepsilon \int_{0}^{1} G^{-}(t, s) b(s) d s, \quad t \in[0,1]
$$

That is,

$$
\int_{0}^{1} G^{+}(t, s) b(s) d s \geq k \int_{0}^{1} G^{-}(t, s) b(s) d s, \quad t \in[0,1]
$$

with $k=\varepsilon+1>1$. And therefore condition (H3) is satisfied as well. It follows from Theorem 2.2 that the nonlinear Neumann problem (3.1) has a positive solution for λ small.

References

[1] A. Boscaggin, A note on a superlinear indefinite Neumann problem with multiple positive solutions, J. Math. Anal. Appl., 377(2011), 259-268.
[2] J. Chu, Y. Sun and H. Chen, Positive solutions of Neumann problems with singularities, J. Math. Anal. Appl., 337(2008), 1267-1272.
[3] K. Deimling, Nonlinear functional analysis, New York, Springer-Verlag, 1985.
[4] J. R. Graef, L. Kong and H. Wang, A periodic boundary value problem with vanishing Green's function, Appl. Math. Lett., 21(2)(2008), 176-180.
[5] D. D. Hai, Positive solutions to a class of elliptic boundary value problems, J. Math. Anal. Appl., 227(1998), 195-199.
[6] D. Jiang, Y. Yang, J. Chu and D. O'Regan, The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order, Nonlinear. Anal., 67(2007), 2815-2828.
[7] M. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
[8] Z. Li, Existence of positive solutions of superlinear second-order Neumann boundary value problem, Nonlinear Anal., 72(2010), 3216-3221.
[9] R. Ma, Nonlinear periodic boundary value problems with sign-changing Green's function, Nonlinear Anal., 74(2011), 1714-1720.
[10] Y. Sun, Y. J. Cho and D. O'Regan, Positive solutions for singular second order Neumann boundary value problems via a cone fixed point theorem, Appl. Math. Comput., 210(2009), 80-86.
[11] J. Sun and W. Li, Multiple positive solutions to second-order Neumann boundary value problems, Appl. Math. Comput., 146(2003), 187-194.
[12] J. Sun, W. Li and S. Cheng, Three positive solutions for second-order Neumann boundary value problems, Appl. Math. Lett., 17(2004), 1079-1084.

