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Abstract. This paper is concerned with the existence of positive solutions of the nonlin-
ear Neumann boundary value problems{

u′′ + a(t)u = λb(t)f(u), t ∈ (0, 1),

u′(0) = u′(1) = 0,

where a, b ∈ C[0, 1] with a(t) > 0, b(t) ≥ 0 and the Green’s function of the linear problem{
u′′ + a(t)u = 0, t ∈ (0, 1),

u′(0) = u′(1) = 0

may change its sign on [0, 1]× [0, 1]. Our analysis relies on the Leray-Schauder fixed point

theorem.

1. Introduction

Let λ > 0 be a parameter. We study the existence of positive solutions of the
following nonlinear Neumann boundary value problems (NBVPs)

(1.1)

{
u′′ + a(t)u = λb(t)f(u), t ∈ (0, 1),

u′(0) = u′(1) = 0,

where a, b ∈ C[0, 1] with a(t) > 0, b(t) ≥ 0, f : [0,∞) → [0,∞) is continuous with
f(0) > 0.

In the past few years, several methods have been used to study the nonlinear
second-order NBVPs

(1.2)

{
u′′ +m2u = f(t, u), t ∈ (0, 1),

u′(0) = u′(1) = 0,
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where m ∈ (0, π
2 ). See, for example, the fixed point theorem in cones [8, 10, 11,

12], Leray-Schauder alternative principle with truncation technique [2], topological
degree [8], shooting method [1], sub-supersolution method [6] and the references
therein.

It is worth remarking that the key condition used in these papers is 0 < m < π
2 ,

which guarantees the Green’s function K(t, s) is greater than 0 on [0, 1] × [0, 1] ,
where

(1.3) K(t, s) =

{
cosm(1−t) cosms

m sinm , 0 ≤ s ≤ t ≤ 1,
cosm(1−s) cosmt

m sinm , 0 ≤ t ≤ s ≤ 1

is the Green’s function of the linear problem

(1.4)

{
u′′ +m2u = 0, t ∈ (0, 1),

u′(0) = u′(1) = 0.

Meanwhile, let

c := min
(t,s)∈[0,1]×[0,1]

K(t, s), C := max
(t,s)∈[0,1]×[0,1]

K(t, s).

Define a cone

(1.5) P := {u ∈ C[0, 1] : min
t∈[0,1]

u(t) ≥ c

C
∥u∥},

where ∥u∥ = max
t∈[0,1]

u(t). Now, Krasnoselskii’s fixed point theorem [3, 7] can be used

to prove the existence and multiplicity of positive solutions of the nonlinear problem
(1.2).

However, if m = π
2 , then it is easy to check K(t, s) is at least 0 and may attain

zeros at some t ∈ [0, 1] × [0, 1]. Thus we can not define the cone P as (1.5) since
c = 0. In 2008, Graef, Kong and Wang [4], defined a new cone of the form

P0 :=

{
u ∈ C[0, 1] : u(t) ≥ 0 on [0, 1],

∫ 1

0

u(t)dt ≥ C0∥u∥
}

(where C0 is some positive constant) to prove the existence of positive solutions.
Motivated by above papers, the purpose here is to determine the values of λ for
which there exists a positive solution of NBVPs (1.1) with sign-changing Green’s
function.

Our proof is based on the following Leray-Schauder fixed point theorem.

Lemma 1.1.([3, Leray-Schauder fixed point theorem]) Let X be a Banach space
and T : X → X a completely continuous operator. Suppose that there exists a
constant M > 0, such that each solution (x, σ) ∈ X × [0, 1] of

x = σTx, σ ∈ [0, 1], x ∈ X
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satisfies ∥x∥X ≤ M. Then T has a fixed point.

Remark 1.1. For some results on the second-order periodic boundary value prob-
lems with sign-changing Green’s function, we refer the readers to Ma [9].

2. Main Results

Let C[0, 1] be the Banach space composed of all continuous real functions de-
fined on [0, 1], which is equipped with the norm ∥u∥ = max

t∈[0,1]
|u(t)|.

We assume that:

(H1) b ∈ C[0, 1] with b(t) ≥ 0, t ∈ [0, 1] and a ∈ C[0, 1] satisfies(π
2

)2

≤ min
t∈[0,1]

a(t) < max
t∈[0,1]

a(t) < π2;

Remark 2.1. Condition (H1) implies that the Green’s function G(t, s) of the linear
problem {

u′′ + a(t)u = 0, t ∈ (0, 1),

u′(0) = u′(1) = 0

exists and may change its sign (Notice that there exist a lot of functions of a such
that (H1) holds; see Example 3.1 below.)

(H2) f : [0,∞) → [0,∞) is continuous with f(0) > 0;

(H3) There exists h > 1 such that∫ 1

0

G+(t, s)b(s)ds ≥ h

∫ 1

0

G−(t, s)b(s)ds,

where G+ and G− are the positive and negative parts of G, respectively.

Throughout the paper, we assume that

f(u) = f(0), for u ≤ 0.

Lemma 2.1. Suppose that (H1), (H2) and (H3) hold. Let 0 < δ < 1. Then there
exists a positive number λ such that for 0 < λ < λ, the integral equation

(2.1) u(t) = λ

∫ 1

0

G+(t, s)b(s)f(u(s))ds

has a positive solutions uλ with ∥uλ∥ → 0 as λ → 0, and uλ(t) ≥ λδf(0)p(t), where

p(t) =

∫ 1

0

G+(t, s)b(s)ds.
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Proof. The proof is motivated by Hai [5]. Let A : C[0, 1] → C[0, 1] defined by

(Au)(t) = λ

∫ 1

0

G+(t, s)b(s)f(u(s))ds, t ∈ [0, 1].

Then A : C[0, 1] → C[0, 1] is completely continuous and the fixed points of A are
solutions of (2.1).

We shall apply Lemma 1.1 to prove that A has a fixed point for λ small. Let
ε > 0 be such that

(2.2) f(u) ≥ δf(0) for 0 ≤ u ≤ ε.

Suppose that λ < ε
2∥p∥f(ε) , thus

(2.3)
f(ε)

ε
<

1

2λ∥p∥
,

where f(t) = max
0≤s≤t

f(s).

It follows from (H2) that

lim
t→0+

f(t)

t
= +∞,

which together with (2.3) implies that there exists Aλ ∈ (0, ε) such that

(2.4)
f(Aλ)

Aλ
=

1

2λ∥p∥
.

Now, let u ∈ C[0, 1] and θ ∈ (0, 1) be such that u = θAu. Then we have

(2.5) |u(t)| =
∣∣∣∣θλ ∫ 1

0

G+(t, s)b(s)f(u(s))ds

∣∣∣∣ ≤ λp(t)f(∥u∥), t ∈ [0, 1]

and therefore
f(∥u∥)
∥u∥

≥ 1

λ∥p∥
,

which implies that ∥u∥ ̸= Aλ. Note that Aλ → 0 as λ → 0. By Lemma 1.1, A has a
fixed point ũλ with ∥ũλ∥∞ ≤ Aλ < ε. Consequently, ũλ(t) ≥ λδf(0)p(t), t ∈ [0, 1],
and the proof is completed. 2

Theorem 2.2. Let (H1), (H2) and (H3) hold. Then there exists a positive number
λ∗ such that (1.1) has a positive solution for λ ∈ (0, λ∗).

Proof. Let q(t) =
∫ 1

0
G−(t, s)b(s)ds. (H3) implies that there exist positive numbers

α, γ ∈ (0, 1) such that

(2.6) q(t)|f(s)| ≤ γp(t)f(0)
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for s ∈ [0, α], t ∈ [0, 1]. Fix δ ∈ (γ, 1) and let λ∗ be such that

(2.7) ∥ũλ∥∞ + λδf(0)∥p∥ ≤ α

for λ < λ∗, where ũλ is given by Lemma 2.1, and

(2.8) |f(x)− f(y)| ≤ f(0)
δ − γ

2

for x, y ∈ [−α, α] with |x− y| ≤ λ∗δf(0)∥p∥.

Let λ < λ∗. We look for a solution uλ of (1.1) of the form ũλ + vλ. Thus vλ
satisfies

vλ(t) = λ

∫ 1

0

G(t, s)g(s)f(ũλ + vλ)ds− λ

∫ 1

0

G+(t, s)b(s)f(ũλ)ds, t ∈ [0, 1].

For each w ∈ C[0, 1], let v = Aw be the solution of

v(t) = λ

∫ 1

0

G(t, s)g(s)f(ũλ + w)ds− λ

∫ 1

0

G+(t, s)b(s)f(ũλ)ds, t ∈ [0, 1].

Then A : C[0, 1] → C[0, 1] is completely continuous. Let v ∈ C[0, 1] and θ ∈ (0, 1)
be such that v = θAv. Then we have

v(t) = θλ

∫ 1

0

G(t, s)b(s)f(ũλ + v)ds− θλ

∫ 1

0

G+(t, s)b(s)f(ũλ)ds, t ∈ [0, 1].

We claim that ∥v∥ ̸= λδf(0)∥p∥. Suppose on the contrary that ∥v∥ = λδf(0)∥p∥.
Then, by (2.7) and (2.8), we get

∥ũλ + v∥ ≤ ∥ũλ∥+ ∥v∥ ≤ α

and

∥f(ũλ + v)− f(ũλ)∥ ≤ f(0)
δ − γ

2
,

which together with (2.6) implies that

(2.9) |v(t)| ≤ λ
δ − γ

2
f(0)p(t) + λγf(0)p(t) = λ

δ + γ

2
f(0)p(t), t ∈ [0, 1].

In particular,

∥v∥ ≤ λ
δ + γ

2
f(0)∥p∥ < λδf(0)∥p∥,

a contradiction, and the claim is proved. By Lemma 2.1, A has a fixed point vλ
with ∥vλ∥ ≤ λδf(0)∥p∥, Hence, vλ satisfies (2.9) and, using Lemma 2.1, we obtain

uλ(t) ≥ ũλ(t)− vλ(t) ≥ λδf(0)p(t)− λ
δ + γ

2
f(0)p(t) = λ

δ − γ

2
f(0)p(t), t ∈ [0, 1],
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i.e., uλ is a positive solution of (1.1). This completes the proof of Theorem 2.2. 2

3. Applications

Example 3.1. Let us consider the following nonlinear Neumann boundary value
problem

(3.1)

u′′ +
(2π
3

)2
u = λ(u3 − 3u2 + u sinu+ 1), t ∈ (0, 1),

u′(0) = u′(1) = 0.

It is well-known that the Green’s function corresponding to (3.1) is given by

G(t, s) =
1

A

{
cos( 2π3 (1− t)) cos( 2π3 (s)), 0 ≤ s ≤ t ≤ 1,
cos( 2π3 (1− s)) cos( 2π3 (t)), 0 ≤ t ≤ s ≤ 1,

where A = 2π
3 sin 2π

3 =
√
3π
3 > 0, m = 2π

3 is a constant, λ > 0 is a parameter,
b(·) ≡ 1 and f(u) = u3 − 3u2 + u sinu+ 1.

It is not difficult to check that conditions (H1) and (H2) are satisfied. Now, we
need only to look for a constant k > 1 such that (H3) holds. In fact, by simple
computation, we get

(3.2)

∫ 1

0

G(t, s)dt =

(
3

2π

)2

,

G(0, 0) = 2
A cos( 2π3 ) < 0, G(0, 1

2 ) =
1
A cos(π3 ) > 0 and∫ 1

0

G+(t, s)b(s)ds−
∫ 1

0

G−(t, s)b(s)ds =

∫ 1

0

G(t, s)ds =
1

m2
> 0, t ∈ [0, 1].

Thus, there exists a constant ε > 0 sufficiently small such that∫ 1

0

G+(t, s)b(s)ds−
∫ 1

0

G−(t, s)b(s)ds ≥ ε

∫ 1

0

G−(t, s)b(s)ds, t ∈ [0, 1].

That is, ∫ 1

0

G+(t, s)b(s)ds ≥ k

∫ 1

0

G−(t, s)b(s)ds, t ∈ [0, 1]

with k = ε+1 > 1. And therefore condition (H3) is satisfied as well. It follows from
Theorem 2.2 that the nonlinear Neumann problem (3.1) has a positive solution for
λ small.
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