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POSITIVE SOLUTIONS FOR A THREE-POINT FRACTIONAL

BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN WITH

A PARAMETER†

YITAO YANG∗ AND YUEJIN ZHANG

Abstract. In this paper, we firstly use Krasnosel’skii fixed point theo-
rem to investigate positive solutions for the following three-point boundary
value problems for p-Laplacian with a parameter

(ϕp(D
α
0+

u(t)))′ + λf(t, u(t)) = 0, 0 < t < 1,

Dα
0+

u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η),

where ϕp(s) = |s|p−2s, p > 1, Dα
0+

is the Caputo’s derivative, α ∈
(2, 3], η, γ ∈ (0, 1), λ > 0 is a parameter. Then we use Leggett-Williams

fixed point theorem to study the existence of three positive solutions for
the fractional boundary value problem

(ϕp(D
α
0+

u(t)))′ + f(t, u(t)) = 0, 0 < t < 1,

Dα
0+

u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η),

where ϕp(s) = |s|p−2s, p > 1, Dα
0+

is the Caputo’s derivative, α ∈
(2, 3], η, γ ∈ (0, 1).
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Key words and phrases : Positive solution, Fractional boundary value prob-

lem, Parameter, Leggett-Williams fixed point theorem.

1. Introduction

It is well known that fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various materials and pro-
cesses, so the differential equations with fractional-order derivative are more
adequate than integer order derivative for some real world problems. Therefore,
the fractional differential equations have been of great interest recently, this is
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because of both the intensive development of the theory of fractional calculus
itself and the applications of such constructions in various scientific fields such
as physics, mechanics, chemistry, economics, engineering and biological sciences,
etc. see [11, 13, 17-19, 28, 32] for example. Some recent investigations have
shown that many physical systems can be represented more accurately using
fractional derivative formulations [2, 3]. Boundary value problems of fractional
differential equations have been investigated in many papers (see [1, 7, 8, 14,
15, 21-25, 27, 29, 33] and references cited therein). The eigenvalue problems of
integer differential equations have been studied extensively by many authors. As
far as the eigenvalue problems of fractional differential equations are concerned,
there are a few results (see [5, 10, 34]).

Z. Bai [5] studied the eigenvalue intervals for a class of fractional boundary
value problem

CDα
0+u(t) + λh(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,

where 2 < α ≤ 3, CDα
0+ is the Caputo fractional derivative, λ > 0 is a parameter.

C. Zhai, L. Xu [25] considered the nonlinear fractional four-point boundary
value problem with a parameter

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u′(0)− µ1u(ξ) = 0, u′(1) + µ2u(η) = 0,

where 1 < α ≤ 2, 0 ≤ ξ ≤ η ≤ 1, 0 ≤ µ1, µ2 ≤ 1, λ > 0 is a parameter.
X. Zhang, L. Liu and Y. Wu [31] investigated the singular eigenvalue problem

for a higher order fractional differential equation

−Dαx(t) = λf(x(t), Dµ1x(t), Dµ2x(t), · · · , Dµn−1x(t)), 0 < t < 1,

x(0) = 0, Dµix(0) = 0, Dµx(1) =

p−2∑
j=1

ajD
µx(ξj), 1 ≤ i ≤ n− 1,

where n ≥ 3, n ∈ N, n − 1 < α ≤ n, n − l − 1 < α − µ1 < n − l, l =
1, 2, · · ·, n− 2, µ− µn−1 > 0, α− µn−1 ≤ 2, α− µ > 1, aj ∈ [0,+∞), 0 < ξ1 <

ξ2 < · · · < ξp−2 < 1, 0 <
∑p−2

j=1 ajξ
α−µ−1
j < 1, Dα is the Riemann-Liouville

fractional derivative.
The equation with a p-Laplacian operator arises in the modeling of different

physical and natural phenomena, non-Newtonian mechanics, nonlinear elastic-
ity and glaciology, combustion theory, population biology, nonlinear flow laws,
and so on. Recently, the existence of solutions to boundary value problems
for fractional differential equation with p-Laplacian operator have been studied
extensively in the literatures, (see [6, 16, 20, 26]).

G. Chai [6] investigated the existence and multiplicity of positive solutions for
the boundary value problem of fractional differential equation with p-Laplacian
operator

Dβ
0+(ϕp(D

α
0+u))(t) + f(t, u(t)) = 0, 0 < t < 1,
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u(0) = 0, u(1) + σDγ
0+u(1) = 0, Dα

0+u(0) = 0,

where Dβ
0+, Dα

0+ and Dγ
0+ are the standard Riemann-Liouville fractional deriv-

ative with 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α − γ − 1, σ is a positive
number.

Z. Liu and L. Lu [16] studied the boundary value problem for nonlinear frac-
tional differential equations with p-Laplacian operator

Dβ
0+(ϕp(D

α
0+u))(t) = f(t, u(t), Dα

0+u(t)), 0 < t < 1,

u(0) = µ

∫ 1

0

u(s)ds+ λu(ξ), Dα
0+u(0) = kDα

0+u(η),

where 0 < α, β ≤ 1, 1 < α+ β ≤ 2, µ, λ, k ∈ R, ξ, η ∈ [0, 1], Dα
0+ denotes the

Caputo fractional derivative of order α. Motivated by the above works, in section
3, we consider the positive solutions for a three-point fractional boundary value
problem for p-Laplacian with a parameter

(ϕp(D
α
0+u(t)))

′ + λf(t, u(t)) = 0, 0 < t < 1, (1)

Dα
0+u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η), (2)

where ϕp(s) = |s|p−2s, p > 1, Dα
0+ is the Caputo’s derivative, α ∈ (2, 3], η, γ ∈

(0, 1), f ∈ C([0, 1]× [0,∞), [0,∞)), λ > 0 is a parameter.
In recent years, using Leggett-Williams fixed point theorem, some authors

obtained three positive solutions for the fractional boundary value problem.
In [26], Zhang used the Leggett-Williams theorem to show the existence of

triple positive solutions to the fractional boundary value problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0.

In [12], Eric R. Kaufmann and Ebene Mboumi gave sufficient conditions for
the existence of at least one and at least three positive solutions to the nonlinear
fractional boundary value problem

Dαu(t) + a(t)f(u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u′(1) = 0.

where Dαis the Riemann-Liouville differential operator of order α, f : [0,∞) →
[0,∞) is a given continuous function and a(t) is a positive and continuous func-
tion on [0, 1].

In [30], X. Zhao, C. Chai, W. Ge considered the existence of three positive
solutions of the following fractional boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u′(0)− βu(ξ) = 0, u′(1) + γu(η) = 0,

where α is a real number with 1 < α ≤ 2, 0 ≤ ξ ≤ η ≤ 1, 0 ≤ β, γ ≤ 1, f ∈
C([0, 1]× [0,∞) → [0,∞)), Dα

0+ is the Caputo fractional derivative.
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In [9], M. Jia, X. Liu studied at least three nonnegative solutions for the
following fractional differential equation with integral boundary conditions

CDαx(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) =

∫ 1

0

g0(s)x(s)ds,

x(1) =

∫ 1

0

g1(s)x(s)ds,

x(k)(0) =

∫ 1

0

gk(s)x(s)ds, k = 2, 3, · · ·, [α],

where CDα is the standard Caputo derivative, α ∈ R and 2 ≤ n = [α] < α <
[α]+1, f ∈ C([0, 1]×R+, R+) and gk ∈ C([0, 1], R) (k = 0, 1, 2, · · ·, [α]) are given
functions, [α] denotes the integer part of the real number α and R+ = [0,+∞).
By means of Leggett-Williams fixed point theorem, some new results on the
existence of at least three nonnegative solutions are obtained.

Motivated by the above works, in section 4, by means of Leggett-Williams
fixed point theorem, we consider the existence of three positive solutions for the
following three-point fractional boundary value problem for p-Laplacian

(ϕp(D
α
0+u(t)))

′ + f(t, u(t)) = 0, 0 < t < 1,

Dα
0+u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η),

where ϕp(s) = |s|p−2s, p > 1, Dα
0+ is the Caputo’s derivative, α ∈ (2, 3], η, γ ∈

(0, 1), f ∈ C([0, 1]× [0,∞), [0,∞)).
As far as we know, no contribution concerns the above three-point fractional

boundary value problem for p-Laplacian with a parameter and the existence of
three positive solutions for the three-point fractional boundary value problem for
p-Laplacian. The aim of this paper is to fill the gap in the relevant literatures.
Such investigations will provide an important platform for gaining a deeper
understanding of our environment.

2. Preliminaries

Definition 2.1 ([6]). The Riemann-Liouville fractional integral operator of or-
der α > 0 of a function u(t) is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided the right side is point-wise defined on (0,+∞).

Definition 2.2 ([6]). The Caputo fractional derivative of order α > 0 of a
continuous function u(t) is given by

Dα
0+u(t) =

1

Γ(n− α)

∫ t

0

u(n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, provided the right side is point-wise defined on (0,+∞).
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Lemma 2.3 ([20]). The three-point boundary value problem (1), (2) has a unique
solution

u(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf (τ, u(τ)) dτ

)
ds,

where

G1(t, s) =


(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(α− 1)t(1− s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1

G2(η, s) =


(α− 1)(1− s)α−2 − (α− 1)(η − s)α−2

Γ(α)
, 0 ≤ s ≤ η ≤ 1,

(α− 1)(1− s)α−2

Γ(α)
, 0 ≤ η ≤ s ≤ 1.

Lemma 2.4 ([20]). Let β ∈ (0, 1) be fixed. The kernel G1(t, s) satisfies the
following properties.
(1): 0 ≤ G1(t, s) ≤ G1(1, s) for all s ∈ (0, 1);
(2): min

β≤t≤1
G1(t, s) ≥ βG1(1, s) for all s ∈ (0, 1).

Lemma 2.5 ([20]). The unique solution u(t) of (1), (2) is nonnegative and
satisfies

min
β≤t≤1

u(t) ≥ β∥u∥. (3)

Theorem 2.6. Suppose E is a real Banach space, K ⊂ E is a cone, let Ω1,Ω2

be two bounded open sets of E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator T :
K ∩ (Ω2\Ω1) → K be completely continuous. Suppose that one of two conditions
hold
(i) ∥Tx∥ ≤ ∥x∥, ∀x ∈ K ∩ ∂Ω1, ∥Tx∥ ≥ ∥x∥, ∀x ∈ K ∩ ∂Ω2;
(ii) ∥Tx∥ ≥ ∥x∥, ∀x ∈ K ∩ ∂Ω1, ∥Tx∥ ≤ ∥x∥, ∀x ∈ K ∩ ∂Ω2,
then T has at least one fixed point in K ∩ (Ω2\Ω1).

Define the cone K by

K =

{
u ∈ C[0, 1] : u(t) ≥ 0, min

β≤t≤1
u(t) ≥ β∥u∥

}
, (4)

and the operator T : K → E by

(Tu)(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds.

(5)
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Lemma 2.7 ([20]). T is completely continuous and T (K) ⊆ K.

Denote

fβ = lim inf
|u|→β

min
0≤t≤1

f(t, u)

|u|p−1
, fβ = lim sup

|u|→β

max
0≤t≤1

f(t, u)

|u|p−1
,

where β = 0+,∞,

M = β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]
.

3. Main results

Theorem 3.1. Suppose that f∞ > 0, f0 < ∞. Then boundary value problem
(1), (2) has at least one positive solution if

1

f∞βp−1Mp−1
< λ <

((1− γ)Γ(α))
p−1

f0
. (6)

Proof. By (6), there exists ε > 0, such that

1

(f∞ − ε)βp−1Mp−1
≤ λ ≤ ((1− γ)Γ(α))

p−1

(f0 + ε)
. (7)

(i) Fixed ε. By f0 < ∞, there exists H1 > 0, such that for u : 0 < |u| ≤ H1, we
have

f(t, u) ≤ (f0 + ε)|u|p−1.

Define

Ω1 = {u ∈ K : ∥u∥ < H1} ,
for u ∈ ∂Ω1, we have

∥Tu∥ = max
0≤t≤1

|(Tu)(t)|

= max
0≤t≤1

{∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

}
≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds

≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λ(f0 + ε)|u|p−1dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λ(f0 + ε)|u|p−1dτ

)
ds
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≤
(
λ(f0 + ε)

)q−1 |u|
∫ 1

0

G1(t, s)ds+
γ

1− γ

(
λ(f0 + ε)

)q−1 |u|
∫ 1

0

G2(η, s)ds

≤
(
λ(f0 + ε)

)q−1 |u| 1

Γ(α)
+

γ

1− γ

(
λ(f0 + ε)

)q−1 |u| 1

Γ(α)

≤ 1

(1− γ)Γ(α)

(
λ(f0 + ε)

)q−1 ∥u∥

≤∥u∥.
Therefore, ∥Tu∥ ≤ ∥u∥.

(ii) By f∞ > 0, there exists H2 > 0, such that for |u| ≥ H2, we have

f(t, u) ≥ (f∞ − ε)|u|p−1.

Choose

H2 = max

{
H1

β
,
H2

β

}
, Ω2 = {u ∈ K : ∥u∥ < H2} ,

by Lemma 5, for u ∈ ∂Ω2, we have

βH2 = β∥u∥ ≤ |u| ≤ ∥u∥ = H2, t ∈ [β, 1],

thus

Tu(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

≥
∫ 1

β

βG1(1, s)ϕq

(∫ s

0

λ(f∞ − ε)|u|p−1dτ

)
ds

+
γβ

1− γ

∫ 1

β

G2(η, s)ϕq

(∫ s

0

λ(f∞ − ε)|u|p−1dτ

)
ds

≥ (λ(f∞ − ε))
q−1 |u|β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

γβ

1− γ
(λ(f∞ − ε))

q−1 |u|
[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]
=(λ(f∞ − ε))

q−1 |u|
{
β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]}
≥ (λ(f∞ − ε))

q−1
βH2

{
β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]}
≥H2 = ∥u∥.
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Therefore, ∥Tu∥ ≥ ∥u∥. So, by Theorem 2.6 (i), we have T has a fixed point
u ∈ Ω2 \ Ω1, therefore, u is a positive solution of boundary value problem (1),
(2). The proof is completed. �

Corollary 3.2. Suppose that f∞ > 0, f0 < ∞. Then boundary value problem
(1), (2) has nonnegative solution when(

1

f∞βp−1Mp−1
,
((1− γ)Γ(α))

p−1

f0

)
⊂ D1,

where D1 = {λ > 0}.

Theorem 3.3. Suppose that f0 > 0, f∞ < ∞. Then boundary value problem
(1), (2) has at least one positive solution if

1

f0βp−1Mp−1
< λ <

((1− γ)Γ(α))
p−1

f∞ . (8)

Proof. By (8), there exists ε > 0, such that

1

(f0 − ε)βp−1Mp−1
≤ λ ≤ ((1− γ)Γ(α))

p−1

(f∞ + ε)
. (9)

(i) Fixed ε. By f0 > 0, there exists H1 > 0, such that for u : 0 < |u| ≤ H1, we
have

f(t, u) ≥ (f0 − ε)|u|p−1, t ∈ [0, 1].

Define

Ω1 = {u ∈ K : ∥u∥ < H1} ,
by Lemma 5, for u ∈ ∂Ω1, we have

βH1 = β∥u∥ ≤ |u| ≤ ∥u∥ = H1, t ∈ [β, 1],

thus,

Tu(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

≥
∫ 1

0

βG1(1, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

≥
∫ 1

0

βG1(1, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γβ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds
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≥
∫ 1

β

βG1(1, s)ϕq

(∫ s

0

λ(f0 − ε)|u|p−1dτ

)
ds

+
γβ

1− γ

∫ 1

β

G2(η, s)ϕq

(∫ s

0

λ(f0 − ε)|u|p−1dτ

)
ds

≥ (λ(f0 − ε))
q−1 |u|β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

γβ

1− γ
(λ(f0 − ε))

q−1 |u|
[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]
=(λ(f0 − ε))

q−1 |u|
{
β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]}
≥ (λ(f0 − ε))

q−1
βH1

{
β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]}
≥H1 = ∥u∥.

Therefore, ∥Tu∥ ≥ ∥u∥.
(ii) By f∞ < ∞, there exists H2 > 0, such that for u : |u| ≥ H2, we have

f(t, u) ≤ (f∞ + ε)|u|p−1.

We shall consider two cases, case 1, f is bounded. Case 2, f is unbounded.
Case 1. Suppose that f is bounded, there exists L > 0, such that

f(t, u) ≤ Lp−1.

Define

H2 = max

{
H1

β
,

Lλq−1

(1− γ)Γ(α)

}
, Ω2 = {u ∈ K : ∥u∥ < H2} ,

for u ∈ ∂Ω2, we have

∥Tu∥ = max
0≤t≤1

|(Tu)(t)|

= max
0≤t≤1

{∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

}
≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds
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≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λLp−1dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λLp−1dτ

)
ds

≤λq−1L

∫ 1

0

G1(t, s)ds+
γ

1− γ
λq−1L

∫ 1

0

G2(η, s)ds

≤λq−1L
1

Γ(α)
+

γ

1− γ
λq−1L

1

Γ(α)

≤ λq−1L

(1− γ)Γ(α)

≤H2 = ∥u∥.

Case 2. Choose H2 > max
{
H1, H2

}
, such that when t ∈ [0, 1] and

0 < |u| ≤ H2, we have f(t, u) ≤ f(t,H2). Let

Ω2 = {u ∈ K : ∥u∥ < H2} ,
for u ∈ ∂Ω2, we have

∥Tu∥ = max
0≤t≤1

|(Tu)(t)|

= max
0≤t≤1

{∫ 1

0

G1(t, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

λf(τ, u(τ))dτ

)
ds

}
≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λf(τ, u(τ))dτ

)
ds

≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λf(τ,H2)dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λf(τ,H2)dτ

)
ds

≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

λ(f∞ + ε)Hp−1
2 dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

λ(f∞ + ε)Hp−1
2 dτ

)
ds

≤ (λ(f∞ + ε))
q−1

H2

∫ 1

0

G1(t, s)ds

+
γ

1− γ
(λ(f∞ + ε))

q−1
H2

∫ 1

0

G2(η, s)ds
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≤ (λ(f∞ + ε))
q−1

H2
1

Γ(α)
+

γ

1− γ
(λ(f∞ + ε))

q−1
H2

1

Γ(α)

≤ (λ(f∞ + ε))
q−1

H2

(1− γ)Γ(α)

≤H2 = ∥u∥.

Therefore, ∥Tu∥ ≤ ∥u∥. So, by Theorem 2.6 (ii), we have T has a fixed point
u ∈ Ω2 \ Ω1, therefore, u is a positive solution of boundary value problem (1),
(2). The proof is completed. �

Corollary 3.4. Suppose that f0 > 0, f∞ < ∞. Then boundary value problem
(1), (2) has nonnegative solution when(

1

f0βp−1Mp−1
,
((1− γ)Γ(α))

p−1

f∞

)
⊂ D1,

where D1 = {λ > 0}.

4. Three positive solution of the problem (10), (11)

In this section, we will give the existence of three positive solutions of the
following fractional boundary value problem

(ϕp(D
α
0+u(t)))

′ + f(t, u(t)) = 0, 0 < t < 1, (10)

Dα
0+u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η), (11)

where ϕp(s) = |s|p−2s, p > 1, Dα
0+ is the Caputo’s derivative, α ∈ (2, 3], η, γ ∈

(0, 1), f ∈ C([0, 1]× [0,∞).
The basic space used in this section is a real Banach space E = C[0, 1] with

the norm ∥u∥ = max
0≤t≤1

|u(t)|.

Definition 4.1. The map α is said to be a nonnegative continuous concave
functional on a cone P of a real Banach space E provided that α : P → [0,∞)
is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Definition 4.2. The map γ is a nonnegative continuous convex functional on
a cone P of a real Banach space E provided that γ : P → [0,∞) is continuous
and

γ(tx+ (1− t)y) ≤ tγ(x) + (1− t)γ(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let α be a nonnegative continuous concave functional on P. Then for positive
real numbers 0 < a < b, we define the following convex sets:

Pr = {x ∈ P | ∥x∥ < r}, P (α, a, b) = {x ∈ P | a ≤ α(x), ∥x∥ ≤ b}.
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The following fixed point theorem is fundamental in the proofs of our main
results.

Theorem 4.3 ([30]). Let A : Pc → Pc be a completely continuous operator and
let α be a nonnegative continuous concave functional on P such that α(x) ≤ ∥x∥
for all x ∈ Pc. Suppose that there exist positive numbers 0 < a < b < d ≤ c such
that

(C1) {x ∈ P (α, b, d) |α(x) > b} ̸= ∅and α(Ax) > b for x ∈ P (α, b, d);

(C2) ∥Ax∥ < a for ∥x∥ ≤ a;

(C3) α(Ax) > b for x ∈ P (α, b, c) with ∥Ax∥ > d.

Then A has at least three fixed points x1, x2, x3 such that

∥x1∥ < a, b < α(x2) and ∥x3∥ > a with α(x3) < b.

Let β ∈ (0, 1) be fixed. Define the cone P by

P =

{
u ∈ C[0, 1] : u(t) ≥ 0, min

β≤t≤1
u(t) ≥ β∥u∥

}
, (12)

and the operator A : P → E by

(Au)(t) =

∫ 1

0

G1(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2

(
η, s)ϕq(

∫ s

0

f(τ, u(τ))dτ

)
ds.

(13)

It is obvious that the existence of a positive solution for the problem (10),
(11) is equivalent to the existence of nontrivial point of A in P.

We define the nonnegative continuous concave functional on P by

α(u) = min
β≤t≤1

u(t), ∀u ∈ P.

It is clear that α(u) ≤ ∥u∥ for u ∈ P.
Let

R =β

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
+

(η − 1)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]
.

(14)

Theorem 4.4. Assume that there exist nonnegative numbers a, b, c such that
0 < a < b < b

β < c and f(t, u) satisfy the following conditions

(A1) f(t, u) < ϕp(c(1− γ)Γ(α)), for all (t, u) ∈ [0, 1]× [0, c];
(A2) f(t, u) ≤ ϕp(a(1− γ)Γ(α)), for all (t, u) ∈ [0, 1]× [0, a];

(A3) f(t, u) > ϕp(
b
R ), for all (t, u) ∈ [β, 1]× [b, b

β ].

Then BVP (10), (11) has at least three positive solutions x1, x2, x3 such that

∥x1∥ < a, b < α(x2) and ∥x3∥ > a, with α(x3) < b.
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Proof. We complete the proof by three steps.
Step 1. Show A : Pc → Pc and A : Pa → Pa.
Firstly, Lemma 2.5 guarantees APc ⊂ P. Secondly, for all u ∈ Pc, we have

0 ≤ u(t) ≤ c and by (A1),

∥Au∥ = max
0≤t≤1

|(Au)(t)|

≤
∫ 1

0

G1(t, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤
∫ 1

0

G1(1, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

+
γ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤c(1− γ)Γ(α)

∫ 1

0

G1(t, s)ds+
γ

1− γ
c(1− γ)Γ(α)

∫ 1

0

G2(η, s)ds

≤c(1− γ) + γc

=c.

Therefore, ∥Au∥ ≤ c which implies that APc ⊂ Pc. The operator A is completely
continuous by Lemma 2.7. Similarly, Au ∈ Pa for all u ∈ Pa.

Step 2. Show {
u ∈ P

(
α, b,

b

β

)
: α(u) > b

}
̸= ∅ (15)

α(Au) > b if u ∈ P

(
α, b,

b

β

)
. (16)

Let u = b+d
2 ; then u ∈ P, α(u) = b+d

2 > b and ∥u∥ = b+d
2 < d. That is, (15)

holds.
For u ∈ P (α, b, b

β ), we have

b ≤ u(t) ≤ b

β
, β ≤ t ≤ 1.

then by (A3), we get

α(Au) = min
β≤t≤1

(Au)(t)

≥ min
β≤t≤1

[∫ 1

0

G1(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
γt

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

]
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≥
[∫ 1

β

βG1(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
γβ

1− γ

∫ 1

0

G2(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

]
≥bβ

R

[∫ 1

β

G1(1, s)ds+
γ

1− γ

∫ 1

β

G2(η, s)ds

]
=
bβ

R

[
(1− β)α−1

Γ(α)
− (1− β)α

Γ(α+ 1)

]
+

βγ

1− γ

[
(1− β)α−1

Γ(α)
+

(η − 1)α−1

Γ(α)
− (η − β)α−1

Γ(α)

]
=b.

Therefore, we have α(Au) > b. Hence, (16) holds.
Step 3. Show α(Au) > b for all u ∈ P (α, b, c) with ∥Au∥ > b

β .

If u ∈ P (α, b, c) with ∥Au∥ > b
β , by Lemma 2.5, we have α(Au) ≥ β∥Au∥ > b.

Hence, an application of Theorem 4.3 completes the proof. �
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