• Title/Summary/Keyword: Personalized in-store

Search Result 38, Processing Time 0.029 seconds

Developing and Evaluating a Drug Information Leaflet of Antidiabetics for Senior Citizens; Employing Performance-based User-testing (노인용 당뇨치료제 안전사용설명서 개발 및 평가: 수행능력 기반 사용자 평가 활용)

  • Kim, Jin;Shim, Haeri;Lee, Iyn-Hyang
    • Korean Journal of Clinical Pharmacy
    • /
    • v.27 no.3
    • /
    • pp.171-177
    • /
    • 2017
  • Objective: The study purpose was to develop a drug information leaflet for the elderly and to evaluate it with performance-based user-testing. Methods: We performed a stratified randomized controlled trial. We recruited 62 elderly patients with age of 65 or above who were taking antidiabetic medications at the point of participating and excluded those who suffered illiteracy. We randomly allocated them into the intervention group with a leaflet for the elderly and the control group with a leaflet for the general public. Main outcome measures were to 'be able to find information' and to 'be able to understand information.' We measured outcome variables by employing performance-based user-testing and analyzed data to find any differences between two groups with t-tests, chi-squared tests or Fisher's exact tests accordingly. Results: More participants in the intervention group understood how to store their medications than those in the control group (intervention group 93% vs. control group 70%; p=0.02). There were no significant differences in other information items between two groups. Mostly 'being able to understand information' was lower than 'being able to find information.' The gaps between two outcome variables were about 10% in the intervention group and about 18% in the control group. The lowest understanding was observed in information relating to drug names and their potential adverse events. Conclusion: Without providing personalized drug information, it might be hard for the elderly to improve their drug knowledge even with leaflets that were developed specifically for the elderly.

A Study on the Deep Learning-Based Textbook Questionnaires Detection Experiment (딥러닝 기반 교재 문항 검출 실험 연구)

  • Kim, Tae Jong;Han, Tae In;Park, Ji Su
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.513-520
    • /
    • 2021
  • Recently, research on edutech, which combines education and technology in the e-learning field called learning, education and training, has been actively conducted, but it is still insufficient to collect and utilize data tailored to individual learners based on learning activity data that can be automatically collected from digital devices. Therefore, this study attempts to detect questions in textbooks or problem papers using artificial intelligence computer vision technology that plays the same role as human eyes. The textbook or questionnaire item detection model proposed in this study can help collect, store, and analyze offline learning activity data in connection with intelligent education services without digital conversion of textbooks or questionnaires to help learners provide personalized learning services even in offline learning.

Design and Implementation of The Ubiquitous Computing Environment-Based on Dynamic Smart on / off-line Learner Tracking System (유비쿼터스 환경 기반의 동적인 스마트 온/오프라인 학습자 추적 시스템 설계 및 구현)

  • Lim, Hyung-Min;Lee, Sang-Hun;Kim, Byung-Gi
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2011
  • In ubiquitous environment, the analysis for student's learning behaviour is essential to provide students with personalized education. SCORM(Sharable Contents Object Reference Model), IMS LD (Instructional Management System Learning Design) standards provide the support function of learning design such as checking the progress. However, in case of applying these standards contain many problem to add or modify the contents. In this paper, We implement the system that manages the learner behaviour by hooking the event of web browser. Through all of this, HTML-based content can be recycled without any additional works and the problems by applying the standard can be improved because the store and analysis of the learning result is possible. It also supports the ubiquitous learning environment because of keeping track of the learning result in case of network disconnected.

A Study on the Data Collection and Analysis System for Learning Experiences in Learner-Centered Customized Education (학습자 중심의 맞춤형 교육을 위한 학습 경험 데이터 수집 및 분석 체계 연구)

  • Sang-woo Kim;Myung-suk Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • This study investigates the comprehensive system for collecting intelligent learning activity data tailored to learner-centered personalized education. We compared and analyzed the characteristics of xAPI, Caliper analytics, and cmi5, which are learning activity data collection standards, and established a system that allows not only standardized data but also non-standardized learning activity data to be stored as big data for artificial intelligence learning analysis. As a result, the system was structured into five stages: defining data types, standardizing learning data using xAPI, storing big data, conducting learning analysis (statistical and AI-based), and providing learner-tailored services. The aim was to establish a foundation for analyzing learning data using artificial intelligence technology. In future research, we will divide the entire system into three stages, implement and execute it, and correct and supplement any shortcomings in the design.

Effects of Perceived Similarity between Consumers and Product Reviewers on Consumer Behaviors (상품후기 작성자에 대해 상품후기 독자가 느끼는 유사성이 상품후기 독자에게 미치는 영향)

  • Kim, Ji-Young;Suh, Eung-Kyo;Suh, Kil-Soo
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.67-90
    • /
    • 2008
  • Prior to making choices among online products and services, consumers often search online product reviews written by other consumers. Online product reviews have great influences on consumer behavior because they are believed to be more reliable than information provided by sellers. However, ever-increasing lists of product reviews make it difficult for consumers to find the right information efficiently. A customized search mechanism is a method to provide personalized information which fits the user's requirements. This study examines effects of a customized search mechanism and perceived similarity between consumers and product reviewers on consumer behaviors. More specifically, we address the following research questions: (1) Can a customized search mechanism increase perceived similarity between product review authors and readers? (2) Are product reviews perceived as more credible when product reviews were written by the authors perceived similar to them? (3) Does credibility of product reviews have a positive impact on acceptance of product reviews? (4) Does acceptance of product reviews have an influence on purchase intention of the readers? To examine these research questions, a lab experiment with a between-subject factor (whether a customized search mechanism is provided or not) design was employed. In order to enhance mundane realism and increase generalizability of the findings, the experiment sites were built based on a real online store, cherrya.com (http://www.cherrya.com/). Sixty participants were drawn from a pool that consisted of undergraduate and graduate students in a large university. Participation was voluntary; all the participants received 5,000 won to encourage their motivation and involvement in the experiment tasks. In addition, 15 participants, who selected by a random draw, received 30,000 won to actually purchase the product that he or she decided to buy during the experiment. Of the 60 participants, 25 were male and 35 were female. In examining the homogeneity between the two groups, the results of t-tests revealed no significant difference in gender, age, academic years, online shopping experience, and Internet usage. To test our research model, we completed tests of the measurement models and the structural models using PLS Graph version 3.00. The analysis confirmed individual item reliability, internal consistency, and discriminant validity of measurements. The results show that participants feel more credible when product reviews were written by the authors perceived similar to them, credibility of product reviews have a positive impact on acceptance of product reviews, and acceptance of product reviews have an influence on purchase intention of the readers. However, a customized search mechanism did not increase perceived similarity between product review authors and readers. The results imply that there is an urgent need to develop a better customized search tool in order to increase perceived similarity between product review authors and readers.

Design of a Personal-Led Health Data Management Framework Based on Distributed Ledger (분산 원장 기반의 개인 주도적 건강 데이터 관리 프레임워크 설계)

  • Moon, Junho;Kim, Dongsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2019
  • After the 4th industrial revolution, the healthcare industry is striving to find new business models through new technologies. Among them, blockchain technology is one of the technologies that have great interest in the healthcare industry. Most providers of personal health record systems have difficulty in securing marketability due to various problems. Therefore, they try to integrate blockchain technology to develop new systems and gain marketability. However, blockchain has limitations in solving the problems of the personal health record system. In this study, we have designed a personalized health data management framework that enables information subjects to acquire full ownership rights of individual's health data, based on distributed ledger technology. For the framework design, we refer to the structure of R3 Corda. It was designed with a different network structure than the existing blockchain systems so that the node can be operated on the personal user's mobile device. This allows information subjects to directly store and manage their own data and share data with authorized network members. Through the proposed system, the information utilization of the healthcare industry can be improved and the public health promotion and medical technology development can be realized.

Developments of Local Festival Mobile Application and Data Analysis System Applying Beacon (비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발)

  • Kim, Song I;Kim, Won Pyo;Jeong, Chul
    • Korea Science and Art Forum
    • /
    • v.31
    • /
    • pp.21-32
    • /
    • 2017
  • Local festivals form the regional cultures and atmosphere of communication; they increase the demand of domestic tourism businesses and thus, have an important role in ripple effects (e.g. regional image improvement, tourist influx, job creation, regional contents development, and local product sales) and economic revitalization. IoT (Internet of Thing) technologies have been developed especially, beacon-one of the IoT services has been applied as plenty of types and forms both domestically and internationally. However, notwithstanding expansion of current digital mobile technologies, it still remains as difficult for the individual to track the information about all the local festivals and to fulfill the tourists' needs of enjoying festivals given the weak strategic approaches and advertisement activities. Furthermore, current festival-related mobile applications don't function well as delivering information and have numerous contents issues (e.g. ways of information delivery within the festival places, independent application usage for each festival, one time usage due to one time event). This research, based on the background mentioned above, aims to develop the local festival mobile application and data analysis system applying beacon technology. First of all, three algorithms were developed, namely, 'festival crowding algorithm', 'visitor stats algorithm', and 'customized information algorithm', and then beta test was followed with the developed application and data analysis system. As a result, they could form the database of visitors' types and behaviors, and provide functions and services, such as personalized information, waiting time for festival contents, and 'hot place' function. Besides, in Google Play store, they also got the titles given with more than 13,000 downloads within first three months and as the most exposed application related with festivals; and, thus, got credited with their marketability and excellence. This research follows this order: chapter 2 shows the literature review of local festival related with technology development, beacon service, and festival application. In Chapter 3, design plans and conditions are described of developing local festival mobile application and data analysis system with beacon. Chapter 4 evaluates the results of the beta performance test to verify applicability of the developed application and data analysis system, and lastly, chapter 5 explains the conclusion and suggests the future research.

A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior (전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구)

  • Chung, Nam-Ho;Kim, Jae-Kyung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.175-191
    • /
    • 2011
  • With the MICE(Meeting, Incentive travel, Convention, Exhibition) industry coming into the spotlight, there has been a growing interest in the domestic exhibition industry. Accordingly, in Korea, various studies of the industry are being conducted to enhance exhibition performance as in the United States or Europe. Some studies are focusing particularly on analyzing visiting patterns of exhibition visitors using intelligent information technology in consideration of the variations in effects of watching exhibitions according to the exhibitory environment or technique, thereby understanding visitors and, furthermore, drawing the correlations between exhibiting businesses and improving exhibition performance. However, previous studies related to booth recommendation systems only discussed the accuracy of recommendation in the aspect of a system rather than determining changes in visitors' behavior or perception by recommendation. A booth recommendation system enables visitors to visit unplanned exhibition booths by recommending visitors suitable ones based on information about visitors' visits. Meanwhile, some visitors may be satisfied with their unplanned visits, while others may consider the recommending process to be cumbersome or obstructive to their free observation. In the latter case, the exhibition is likely to produce worse results compared to when visitors are allowed to freely observe the exhibition. Thus, in order to apply a booth recommendation system to exhibition halls, the factors affecting the performance of the system should be generally examined, and the effects of the system on visitors' unplanned visiting behavior should be carefully studied. As such, this study aims to determine the factors that affect the performance of a booth recommendation system by reviewing theories and literature and to examine the effects of visitors' perceived performance of the system on their satisfaction of unplanned behavior and intention to reuse the system. Toward this end, the unplanned behavior theory was adopted as the theoretical framework. Unplanned behavior can be defined as "behavior that is done by consumers without any prearranged plan". Thus far, consumers' unplanned behavior has been studied in various fields. The field of marketing, in particular, has focused on unplanned purchasing among various types of unplanned behavior, which has been often confused with impulsive purchasing. Nevertheless, the two are different from each other; while impulsive purchasing means strong, continuous urges to purchase things, unplanned purchasing is behavior with purchasing decisions that are made inside a store, not before going into one. In other words, all impulsive purchases are unplanned, but not all unplanned purchases are impulsive. Then why do consumers engage in unplanned behavior? Regarding this question, many scholars have made many suggestions, but there has been a consensus that it is because consumers have enough flexibility to change their plans in the middle instead of developing plans thoroughly. In other words, if unplanned behavior costs much, it will be difficult for consumers to change their prearranged plans. In the case of the exhibition hall examined in this study, visitors learn the programs of the hall and plan which booth to visit in advance. This is because it is practically impossible for visitors to visit all of the various booths that an exhibition operates due to their limited time. Therefore, if the booth recommendation system proposed in this study recommends visitors booths that they may like, they can change their plans and visit the recommended booths. Such visiting behavior can be regarded similarly to consumers' visit to a store or tourists' unplanned behavior in a tourist spot and can be understand in the same context as the recent increase in tourism consumers' unplanned behavior influenced by information devices. Thus, the following research model was established. This research model uses visitors' perceived performance of a booth recommendation system as the parameter, and the factors affecting the performance include trust in the system, exhibition visitors' knowledge levels, expected personalization of the system, and the system's threat to freedom. In addition, the causal relation between visitors' satisfaction of their perceived performance of the system and unplanned behavior and their intention to reuse the system was determined. While doing so, trust in the booth recommendation system consisted of 2nd order factors such as competence, benevolence, and integrity, while the other factors consisted of 1st order factors. In order to verify this model, a booth recommendation system was developed to be tested in 2011 DMC Culture Open, and 101 visitors were empirically studied and analyzed. The results are as follows. First, visitors' trust was the most important factor in the booth recommendation system, and the visitors who used the system perceived its performance as a success based on their trust. Second, visitors' knowledge levels also had significant effects on the performance of the system, which indicates that the performance of a recommendation system requires an advance understanding. In other words, visitors with higher levels of understanding of the exhibition hall learned better the usefulness of the booth recommendation system. Third, expected personalization did not have significant effects, which is a different result from previous studies' results. This is presumably because the booth recommendation system used in this study did not provide enough personalized services. Fourth, the recommendation information provided by the booth recommendation system was not considered to threaten or restrict one's freedom, which means it is valuable in terms of usefulness. Lastly, high performance of the booth recommendation system led to visitors' high satisfaction levels of unplanned behavior and intention to reuse the system. To sum up, in order to analyze the effects of a booth recommendation system on visitors' unplanned visits to a booth, empirical data were examined based on the unplanned behavior theory and, accordingly, useful suggestions for the establishment and design of future booth recommendation systems were made. In the future, further examination should be conducted through elaborate survey questions and survey objects.