DOI QR코드

DOI QR Code

A Study on the Data Collection and Analysis System for Learning Experiences in Learner-Centered Customized Education

학습자 중심의 맞춤형 교육을 위한 학습 경험 데이터 수집 및 분석 체계 연구

  • Sang-woo Kim (Department of Computer Engineering, Keimyung University) ;
  • Myung-suk Lee (TabulaRasa Collage, Keimyung University)
  • 김상우 (계명대학교 컴퓨터공학과) ;
  • 이명숙 (계명대학교 타불라라사칼리지)
  • Received : 2024.03.04
  • Accepted : 2024.03.23
  • Published : 2024.04.30

Abstract

This study investigates the comprehensive system for collecting intelligent learning activity data tailored to learner-centered personalized education. We compared and analyzed the characteristics of xAPI, Caliper analytics, and cmi5, which are learning activity data collection standards, and established a system that allows not only standardized data but also non-standardized learning activity data to be stored as big data for artificial intelligence learning analysis. As a result, the system was structured into five stages: defining data types, standardizing learning data using xAPI, storing big data, conducting learning analysis (statistical and AI-based), and providing learner-tailored services. The aim was to establish a foundation for analyzing learning data using artificial intelligence technology. In future research, we will divide the entire system into three stages, implement and execute it, and correct and supplement any shortcomings in the design.

본 연구는 학습자 중심의 맞춤형 교육을 위한 지능형 학습활동 데이터를 수집하기 위한 전체 체계를 연구하였다. 학습활동 데이터수집 표준인 xAPI, Caliper analytics, cmi5의 특징들을 비교 분석하였고, 이러한 표준화된 데이터뿐만 아니라 표준화되지 않은 학습활동 데이터도 모두 빅데이터로 저장되어 인공지능 학습분석을 할 수 있는 체계를 마련하였다. 그 결과 데이터 유형 정의, xAPI 적용한 학습데이터 표준화, 빅데이터 저장, 학습분석(통계 기반 및 AI 기반), 학습자 맞춤형 서비스인 5개의 단계로 구성하였다. 이를 통해 인공지능 기술을 적용한 학습데이터 분석을 위한 기반을 마련하고자 하였다. 향후 연구에서는 전체 체계를 3개의 단계로 나누어 구현하고 실행하면서 설계에서 부족한 부분을 수정·보완할 것이다.

Keywords

References

  1. S. A. Lee, "Policy trends and challenges in education big data for future education," Education Trends, vol. 7, pp. 1-5, May, 2022.
  2. Ministry of Education, Ministry of Public Administration and Security, Ministry of Knowledge Economy, Korea Communications Commission, National Technology Council, Big Data Master Plan for Implementing Smart Nation, 2020.
  3. Ministry of Education, "Developing Talents Leading the Future of Education Innovation Felt by the People," 2020 Work Plan, 2020.
  4. Ministry of Education. (2020). Developing Talents Leading the Future of Education Innovation Felt by the People, 2020 Work Plan, https://korea.kr/briefing/pressRelease-View.do?newsId=156554267, 2023.2.23.
  5. Republic of Korea Policy Briefing, "Digital-Based Education Innovation Plan," February, 2023, https://korea.kr/briefing/pressReleaseView.do?newsId=156554267.
  6. 1EdTech, xAPI, Nov. 28, 2023 [Online]. Available: https://www.1edtech.org/standards/caliper
  7. ADL, Nov. 28, 2023 [Online]. Available: https://adlnet.gov/projects/xapi/
  8. EduTech blog, xAPI/LRS, Dec. 15, 2023 [Online]. Available: https://m.blog.naver.com/redmin00/221766459423
  9. IMS Korea Forum, IMS Caliper, Dec. 15, 2023 [Online]. Available: https://duyheo.github.io/standard/2017/11/30/ims-kr-1013-1.html
  10. askedtech, xAPI, Dec. 15, 2023 [Online]. Available: https://www.askedtech.com/post/1342405
  11. ADL, cmi5, Jan. 7, 2024 [Online]. Available: https://adlnet.gov/projects/cmi5-specification/#cmi5-and-xapi
  12. Learningspark, Comparison of Standard Specifications, Jan. 7, 2024 [Online]. Available: http://www.learningsparklab.com/archives/2019
  13. Learningspard, LRS, Jan. 15, 2024 [Online]. Available: http://www.learningsparklab.com/archives/2016
  14. askedtech, LRS, Jan. 15, 2024 [Online]. Available: https://www.askedtech.com/post/1342391
  15. L. F. Zapata-Rivera and M. M. Larrondo Petrie, "xAPI-based model for tracking on-line laboratory applications", IEEE Conference Paper, pp. 1-9, October, 2018, DOI: 10.1109/FIE.2018.8658869
  16. J. S. Choi and S. H. Ahn, "Analysis of data collection elements and interoperability of xAPI and Caliper," Journal of Creative Information Culture, vol. 9, no. 4, pp. 369-378, November, 2023.
  17. Y. J. Kwon and C. H. Park, "Extraction of learning experiences from virtual training content using xAPI," Journal of the Korean Game Society, 23(3), pp. 49-61, June, 2023, DOI: 10.7583/JKGS.2023.23.3.49
  18. J. M. Jeong, W. J. Kim, and C. D. Koo, "Analysis of big data in social media for discovering educational policy agendas," Korea Education & Research Information Service, Research Report, 2016.
  19. B. K. Gye, "Data collection for intelligent learning analysis: API enhancement research," Korea Education & Research Information Service, Research Report, 2018.
  20. E. M. Seong, S. H. Jin, and M. N. Yoo, "Exploration of learning data for supporting self-directed learning of learners from the perspective of learning analytics," Journal of Educational Technology, 32(3), pp. 487-533, August, 2016. https://doi.org/10.17232/KSET.32.3.487
  21. IMS KOREA, Caliper analytics, https://imskorea.or.kr/specification/ims-caliper-analytics-1-1