Game environment, game map and background graphic design is very important elements and factors that support fun, look & feel, immersion and player's acting fields. In this paper we defined elements of game background environment. And then make an investigation and refer to sundry records and books, we described elements of periodic environments, historic environments, natural environments, artificial environments, cultural environments, virtual environments, weather environments. Especially, the study suggests the model of game environment desgin to apply game map and game background graphic design.
In this paper we deal with some shadowing properties of discrete dynamical systems on a compact metric space via the density of subdynamical systems. Let $f:X{\rightarrow}X$ be a continuous map of a compact metric space X and A be an f-invariant dense subspace of X. We show that if $f{\mid}_A:A{\rightarrow}A$ has the periodic shadowing property, then f has the periodic shadowing property. Also, we show that f has the finite average shadowing property if and only if $f{\mid}_A$ has the finite average shadowing property.
The Journal of the Korea institute of electronic communication sciences
/
v.1
no.1
/
pp.49-55
/
2006
Applied by periodic Stimulating Currents in Bonhoeffer -Van der Pol(BVP) model, chaotic and periodic phenomena occured at specific conditions. The conditions of the chaotic motion in BVP comprised 0.7182< $A_1$ <0.792 and 1.09< $A_1$ <1.302 proved by the analysis of phase plane, bifurcation diagram, and lyapunov exponent. To control the chaotic motion, two methods were suggested by the first used the amplitude parameter A1, $A1={\varepsilon}((x-x_s)-(y-y_s))$ and the second used the temperature parameterc, $c=c(1+{\eta}cos{\Omega}t)$ which the values of ${\eta},{\Omega}$ varied respectlvly, and $x_s$, $y_s$ are the periodic signal. As a result of simulating these methods, the chaotic phenomena was controlled with the periodic motion of periodisity. The feasibilities of the chaotic and the periodic phenomena were analysed by phase plane Poincare map and lyapunov exponent.
Let f : M longrightarrow M be a homotopically periodic self-map of a closed surface M. Except for M = $S^2$, the Nielsen number N(f) and the Lefschetz number L(f) of the self-map f are the same. This is a generalization of Kwasik and Lee's result to 2-dimensional case. On the 2-sphere $S^2$, N(f) = 1 and L(f) = deg(f) + 1 for any self-map f : $S^2$longrightarrow$S^2$.
Transactions of the Korean Society of Mechanical Engineers
/
v.19
no.5
/
pp.1158-1167
/
1995
In this study, the dynamic instabilities of a beam, subjected to periodic short impulsive loading, are investigated using simple 2-DoF beam model. The behaviors of beam model whose axial motions are constrained are studied for the case of elastic and elastic-plastic behavior. In the case of elastic behavior, the chaotic responses due to the periodic pulse are identified, and the characteristics of the behavior are analysed by investigating the fractal attractors in the Poincare map. The short-term and long-term responses of the beam are unpredictable because of the extreme sensitivities to parameters, a hallmark of chaotic response. In the case of elastic-plastic behavior, the responses are governed by the plastic strains which occur continuously and irregularly as time increases. Thus the characteristics of the response behavior change continuously due to the plastic strain increments, and are unpredictable as well as the elastic case.
We consider a two parametric family of the planar systems with the form $\dot{x}=P(x,\;y)+{\in}_1p_1(x,\;y)+{\in}_2p_2(x,\;y)$, $\dot{y}=Q(x,\;y)+{\in}_1p_1(x,\;y)+{\in}_2p_2(x,\;y)$, where the unperturbed equation(${\in}_1={\in}_2=0$) is assumed to have at least one periodic solution or limit cycle. Our aim here is to study the behavior of the system under two parametric perturbations; in fact, using the Poincare-Andronov technique, we impose conditions on the system which guarantee persistence of the periodic trajectories. At the end, we apply the result on the Van der Pol equation ; where, we consider the effect of nonlinear damping on the equation. Also the Hopf bifurcation for the Van der Pol equation will be investigated.
In this paper, we show that for any continuous map $f$ of the circle $S^1$ to itself, (1) $x{\in}{\Omega}(f){\backslash}\overline{R(f)}$, then $x$ is not a turning point of $f$ and (2) if $P(f)$ is non-empty, then $R(f)$ is closed if and only if $AP(f)$ is closed.
Journal of the Korean Society for Precision Engineering
/
v.12
no.1
/
pp.123-131
/
1995
다주파수 입력을 갖는 강한 비선형 시스템의 유사주기 (quasi-periodic) 해를 해석하기 위하여 개선된 고정 점법(FPA:Fixed Point Alogrithm)을 개발하였다. 안정성 및 천이 특성을 판별하기 위하여 사용되어지는 Floquest 지수인 해석적 자코비언을 구하기 위하여 Poincare 맵상에서 이산 적분법을 새로이 고안, 사용하였다. 본 방법의 우수성을 입증하기 위하여 2개의 주파수 입력을 갖는 선형 시스템과 비선형 시스템을 예로 사용하였다. 본 방법을 이용하여 비선형 시스템에서 발생한 복잡한 chaos 현상을 체계적으로 해석하였다.
In this paper, we introduce the concept of generalized weak q-contractivity for multivalued maps defined on quasi-metric spaces. A new fixed point theorem for these maps is established. The convergene of iterate schem of the form $x_n+1\;{\in}\;Fx_n$ is investigated. And a new periodic point theorem for weakly q-contractive self maps of quasi-metric spaces is proved.
In order to install ultra wide band and ultra long-haul transmission link based on standard single mode fiber, optical signal distortion due to chromatic dispersion and nonlinear Kerr effect must to be compensated. In this paper, optical link consisted of dispersion management and optical phase conjugation is proposed for compensation of the distorted wavelength division multiplexed (WDM) channels. Dispersion map profile in the proposed dispersion-managed link is configured by periodic repetitive shape, and optical phase conjugator is placed at various position including the midway of total transmission length. It is confirmed from simulation results that when the residual dispersion per span (RDPS) selected in the proposed dispersion-managed link to be large, the compensation of distorted WDM channels in the non-midway OPC system is more improved than the conventional dispersion-managed link.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.