DOI QR코드

DOI QR Code

PERSISTENCE OF PERIODIC TRAJECTORIES OF PLANAR SYSTEMS UNDER TWO PARAMETRIC PERTURBATIONS

  • Published : 2007.05.31

Abstract

We consider a two parametric family of the planar systems with the form $\dot{x}=P(x,\;y)+{\in}_1p_1(x,\;y)+{\in}_2p_2(x,\;y)$, $\dot{y}=Q(x,\;y)+{\in}_1p_1(x,\;y)+{\in}_2p_2(x,\;y)$, where the unperturbed equation(${\in}_1={\in}_2=0$) is assumed to have at least one periodic solution or limit cycle. Our aim here is to study the behavior of the system under two parametric perturbations; in fact, using the Poincare-Andronov technique, we impose conditions on the system which guarantee persistence of the periodic trajectories. At the end, we apply the result on the Van der Pol equation ; where, we consider the effect of nonlinear damping on the equation. Also the Hopf bifurcation for the Van der Pol equation will be investigated.

Keywords

References

  1. Z. Afsharnejad, Effect of nonlinear terms f(x, i:) on harmonic oscillator, Iranian J. Sci. Tech. 26 (2002), No. AI, 137-144
  2. Z. Afsharnejad, Nonlinear perturbation of the Mathieu equation, Indian J. Pure. Appl. Math. 30 (1999), no. 5, 495-508
  3. D. V. Anosov and V. I. Arnold, Dynamical systems I, Encyclopaedia of Mathematical Sciences, vol. 1, springer-Verlag, Berlin, 1988
  4. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, New York, 1988
  5. C. Chicone, Bifurcations of Nonlinear Osillations and F'requency Entrainment near resonance, SIAM J. Math. Anal., 2004 (this is new version of his paper in the same journal SIAM J. Math. Anal. 23 (1992), no. 6, 1577-1608 https://doi.org/10.1137/0523087
  6. C. Chicone, On bifurcation of limit cycles from centers, Bifurcations of Planar vector fields (Luminy, 1989), 20-43, Lecture Notes in Mathematics, 1455, 1990 https://doi.org/10.1007/BFb0085389
  7. C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Diff. Equations 69 (1987), no. 3, 310-321 https://doi.org/10.1016/0022-0396(87)90122-7
  8. C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Tran. Amer. Math. Soc. 312 (1989), no. 2, 433-486 https://doi.org/10.2307/2000999
  9. C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations 91 (1991), no. 2, 268-326 https://doi.org/10.1016/0022-0396(91)90142-V
  10. S. P. Diliberto, On systems of ordinary differential equations, Annals of Mathematics Studies, Vol. 20, Prinston University, 1950
  11. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcation of vectors fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983
  12. J. Hale, Ordinary Differential Equations, Wiley, New York, 1969
  13. J. Hale and P. Taboas, Bifurcation near degenerate families, Applicable Anal. 11 (1980/81), no. 1, 21-37 https://doi.org/10.1080/00036818008839316
  14. L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, 1993
  15. O. Rabiei Motlagh and Z. Afsharnejad, Existence of periodic solutions and Homoclinic Orbits for third-order differential equations, Int. J. Math. Math. Sci. (2003), no. 4, 209-228 https://doi.org/10.1155/S0161171203107089
  16. S. Wiggins, Introduction to Applied nonlinear dynamical systems and Chaos, Tex in Applied Mathematics, Vol. 2, Springer-Verlag, New York, 1990

Cited by

  1. Geometric Method for Free Oscillator under Two Parametric Perturbation vol.9, pp.1, 2011, https://doi.org/10.1080/1726037X.2011.10698591
  2. EXTENSION OF CHICONE'S METHOD FOR PERTURBATION SYSTEMS OF THREE PARAMETERS WITH APPLICATION TO THE LIENARD SYSTEM vol.22, pp.03, 2012, https://doi.org/10.1142/S0218127412500654