• Title/Summary/Keyword: Periodic Boundary Conditions

Search Result 123, Processing Time 0.024 seconds

PERIODIC SOLUTION TO DELAYED HIGH-ORDER COHEN-GROSSBERG NEURAL NETWORKS WITH REACTION-DIFFUSION TERMS

  • Lv, Teng;Yan, Ping
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.295-309
    • /
    • 2010
  • In this paper, we study delayed high-order Cohen-Grossberg neural networks with reaction-diffusion terms and Neumann boundary conditions. By using inequality techniques and constructing Lyapunov functional method, some sufficient conditions are given to ensure the existence and convergence of the periodic oscillatory solution. Finally, an example is given to verify the theoretical analysis.

SIGN CHANGING PERIODIC SOLUTIONS OF A NONLINEAR WAVE EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.243-257
    • /
    • 2008
  • We seek the sign changing periodic solutions of the nonlinear wave equation $u_{tt}-u_{xx}=a(x,t)g(u)$ under Dirichlet boundary and periodic conditions. We show that the problem has at least one solution or two solutions whether $\frac{1}{2}g(u)u-G(u)$ is bounded or not.

  • PDF

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD (대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석)

  • Im, D.K.;Choi, S.I.;Park, S.H.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • In this paper, the diagonal implicit harmonic balance method is applied to analyze helicopter rotor blade flow. The periodic boundary condition for Fourier coefficients is also applied in hover and forward flight conditions. It is available enough to simulate the forward flight problem with only one rotor blade using the periodic boundary condition in the frequency domain. In order to demonstrate the present method, Caradonna & Tung's rotor blades were used and the results were compared to the time-accurate method and experimental data.

MULTIPLE SOLUTIONS FOR A CLASS OF THE SYSTEMS OF THE CRITICAL GROWTH SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.389-402
    • /
    • 2008
  • We show the existence of at least two solutions for a class of systems of the critical growth nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We first show that the system has a positive solution under suitable conditions, and next show that the system has another solution under the same conditions by the linking arguments.

  • PDF

BOUNDARY VALUE PROBLEMS FOR NONLINEAR PERTURBATIONS OF VECTOR P-LAPLACIAN-LIKE OPERATORS

  • Manasevich, Raul;Mawhin, Jean
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.665-685
    • /
    • 2000
  • The aim of this paper is to obtain nonlinear operators in suitable spaces whise fixed point coincide with the solutions of the nonlinear boundary value problems ($\Phi$($\upsilon$'))'=f(t, u, u'), l(u, u') = 0, where l(u, u')=0 denotes the Dirichlet, Neumann or periodic boundary conditions on [0, T], $\Phi$: N N is a suitable monotone monotone homemorphism and f:[0, T] N N is a Caratheodory function. The special case where $\Phi$(u) is the vector p-Laplacian $\mid$u$\mid$p-2u with p>1, is considered, and the applications deal with asymptotically positive homeogeneous nonlinearities and the Dirichlet problem for generalized Lienard systems.

  • PDF

Evaluation of Effective In-Plane Elastic Properties by Imposing Periodic Displacement Boundary Conditions (주기적 변형 경계조건을 적용한 면내 유효 탄성 물성치의 계산)

  • 정일섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1950-1957
    • /
    • 2004
  • Analysis for structures composed of materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. In order to evaluate the effective properties, a unit cell is defined and loaded somehow, and its response is investigated. The imposed loading, however, should accord to the status of unit cells immersed in the macroscopic structure to secure the accuracy of the properties. In this study, mathematical description for the periodicity of the displacement field is derived and its direct implementation into FE models of unit cell is attempted. Conventional finite element code needs no modification, and only the boundary of unit cell should be constrained in a way that the periodicity is preserved. The proposed method is applicable to skew arrayed in-homogeneity problems. Homogenized in-plane elastic properties are evaluated for a few representative cases and the accuracy is examined.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.