References
- M. Cohen, S. Grossberg, Absolute stability and global pattern formation and parallel memory storagy by competitive neural networks, IEEE Trans. Syst. Man Cybernet SMC-13(1983), 15-23.
- J. Cao, L. Liang, Boundedness and stability for Coheb-Grossbery neural network withtime- varying delays, J.Math. Anal.Application 296(2004), 665-685. https://doi.org/10.1016/j.jmaa.2004.04.039
- J. Cao, X. Li, Stability in delayed Cohen-Grossberg neural networks: LMI optimization approach, Physica D 212(2005), 54-65. https://doi.org/10.1016/j.physd.2005.09.005
- Z. Chen, H. Zhao & J. Ruan, Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay, Chaos Solitons & Fractals 24(2006), 421-430.
- H. Jiang, J. Cao, Dynamics of Cohen-Grossbery neural networks with time-varying delays, Phys. Lett.A 354(2006), 414-422. https://doi.org/10.1016/j.physleta.2006.01.078
- T. Chen, L. Rong, Robust global exponential stability of Cohen-Grossberg neural networks with time delays, IEEE trans. Neur. Network 15(2004), 203-206. https://doi.org/10.1109/TNN.2003.822974
- Y. Li, Existence and stability of periodic solutions for Cohen-Grossbery neural networks with multiple delays, Chaos Solitons & Fractals 20(2004), 459-466. https://doi.org/10.1016/S0960-0779(03)00406-5
- C. Hwang, C. Cheng & T. Li, Globally exponential stability of generalized Cohen-Grossberg neural networks with time dilay, Phys. Lett. A 319(2003), 157-166. https://doi.org/10.1016/j.physleta.2003.10.002
- H. Wan, H. Qiao & J. Peng, Delay-independent criteria for exponential stability generalized Cohen-Grossberg neural networks with dicrete delay, Phys. Lett.A 353(2006), 151-157. https://doi.org/10.1016/j.physleta.2005.12.085
- X. Liao, C. Li & K. Wong, Criteria for exponential stability of Cohe-Crossberg neural networks, Neural Networks 17(2004), 1401-1414. https://doi.org/10.1016/j.neunet.2004.08.007
- W. Xiong, D. Xu, Global exponential stability of discrete-time Cohen-Grossberg neural networks, Neurocomputing 64(2005), 433-446. https://doi.org/10.1016/j.neucom.2004.08.004
- J. Xu, Z. Liu,& X. Liao, Global asymptotic stability of high-order Hopfield type neural networks with time delays, Comp. Math. Application 45(2003), 1729-1737. https://doi.org/10.1016/S0898-1221(03)00151-2
- P.Yan, T. Lv, Stavility of delayed reaction diffusion high-order Cohen-Grossberg neural networks with variable coefficient, Proccedings of Second International Symposium on Intelligent Information Technology Application, IEEE CS Press 1(2008), 741-745.
- K. Yuan, J. Cao, Global exponential stability of Cohen-Grossberg networks with multiple time-barying delays, LNCS 3173(2004), 745-753.
- J. Zhang, Y. Suda, H. Komine, Global exponential Stability of Cohen-Grossbery neural networks with variable delays, Phys. Lett.A 338(2005), 44-50. https://doi.org/10.1016/j.physleta.2005.02.005
- H. Zhao, K. Wang, Dynamical behaviors of Cohen-Grosberg neural networks with delays and reaction-diffusion terms, Neurocomputing 70(2006), 536-543. https://doi.org/10.1016/j.neucom.2005.11.009
- J. Cao, L. Liang & J. Lamb, Exponenial Stability of high-order bidirectional associative memory neural networks with time delays, Physica D 199(2004), 425-436. https://doi.org/10.1016/j.physd.2004.09.012
- J. Liang, J. Cao, Global exponential Stability of reaction- diffusion recurrent neural networks with time- varying delays, Phys. Lett. A 314(2003), 434-442. https://doi.org/10.1016/S0375-9601(03)00945-9
- Q. Song, J. Cao, , Global exponential Stability and existence of periodic solutions in BAM neural networks with distributed delays and reaction-diffusion terms, Chaos Solitons & Fracctals 23(2005), 421-430. https://doi.org/10.1016/j.chaos.2004.04.011
- Q. Song, Z. Zhao, Y. Li, Global exponential Stability of BAM neural networks with distributed delays and reaction-diffusion terms, Phys. Lett. A 335 (2005), 213-225. https://doi.org/10.1016/j.physleta.2004.12.007
- Q. Song, J. Cao, Z. Zhao, Periodic solutions and its exponential stability of reaction-diffusion recurrent neural netwokes with continuously distributed delays, Nonlinear Anal :Real World Application 7(2006), 421-430.
- H. Zhao, G. Wang, Existence of periodic oscillatory solution of reaction-diffusion neural networks with delays, Phys. Lett. A 343(2005), 372-383. https://doi.org/10.1016/j.physleta.2005.05.098
- G. Lu, Global exponential Stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet Boundary conditons, Chaos Solitons & Fractals 35(2008), 116-125. https://doi.org/10.1016/j.chaos.2007.05.002
- S. Schiff, K. Jerger, D. Duong, etc, Controlling chaos in the brain, Nature 370(1994), 615-620. https://doi.org/10.1038/370615a0
- X. Liao, K. Wong, C. Leung, etc, Hopf bifurcation and chaos in a single delayed neuron equation with non monotonic activation function, Chaos Solitons & Fractals 12 (2001), 1535-1547. https://doi.org/10.1016/S0960-0779(00)00132-6