INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar (Department of Mathematics, Quaid-i-Azam University) ;
  • Khan, Madad (Department of Mathematics, Quaid-i-Azam University) ;
  • Hussain, Saqib (Department of Mathematics, COMSATS Institute of Information Technology)
  • Published : 2010.01.30

Abstract

We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

Keywords

References

  1. J. Ahsan, K. Saifullah and M. Farid Khan Semigroups characterized by their fuzzy ideals, Fuzzy systems and Mathemtics, 9 (1995) 29 - 32.
  2. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  3. K. T. Atanassov, New operations defined over the intuiionistic fuzzy sets, Fuzzy Sets and Systems, 61(1994), 137-142. https://doi.org/10.1016/0165-0114(94)90229-1
  4. K. T. Atanassov, Intuitionistic fuzzy sets, Theory and applications, Studies in Fuzziness and Soft Computing, Heidelberg; Physica-Verlag, 35(1999).
  5. P. Burillo and H. Bustince, Vague are intuitionistic fuzzy sets, Fuzzy Sets and Systems, 79(1996), 403-405. https://doi.org/10.1016/0165-0114(95)00154-9
  6. B. Davvaz, W. A. Dudek Y. B. Jun, Intuitionistic fuzzy $H_{v}$-submodules, Inform. Sci. 176 (2006) 285-300. https://doi.org/10.1016/j.ins.2004.10.009
  7. S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst 117 (2001), 209-213. https://doi.org/10.1016/S0165-0114(98)00235-8
  8. L. Dengfeng, C. Chunfian, New similarity measures of intuitionistic fuzzy sets and applications to pattern recognitions, Pattern Reconit Lett 23 (2002), 221-225. https://doi.org/10.1016/S0167-8655(01)00110-6
  9. W. L. Gau, D. J. Buehre, Vague sets, IEEE Trans Syst Man Cybern 23 (1993), 610-614. https://doi.org/10.1109/21.229476
  10. Y. B. Jun, Intuitionistic fuzzy bi-ideals of ordered semigroups, KYUNGPOOK Math. J. 45 (2005), 527-537.
  11. N. Kehayopulu, On regular duo ordered semigroups, Math. Japonica 37 No. 6 (1990), 1051-1056.
  12. N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum Vol. 65 (2002) 128-132. https://doi.org/10.1007/s002330010079
  13. N. Kehayopulu and M. Tsingelis, Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171 (2005) 13-28. https://doi.org/10.1016/j.ins.2004.03.015
  14. N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subset, Inform. Sci. 176 (2006) 65-71.
  15. K. H. Kim and Y. B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math Math. Sci., 27(5)(2001), 261-267. https://doi.org/10.1155/S0161171201010778
  16. K. H. Kim and Y. B. Jun, Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math., 33(4)(2002), 443-449.
  17. K. H. Kim, W. A. Dudek, and Y. B. Jun, Intuitionistic fuzzy subqasigroups of quasigroups, Quasigroups Relat Syst 7 (2000), 15-28.
  18. M. Shabir and A. Khan, Characterizations of ordered semigroups by the properties of their fuzzy generalized bi-ideals, New Math. Natural Comput., 4 (2) (2008), 237-250. https://doi.org/10.1142/S1793005708001069
  19. M. Shabir and A. Khan, Intuitionistic fuzzy filters in ordered semigroups, J. Applied Math. Inform. Vol. 26, 5-6, (2008) 213-220.
  20. M. Shabir and A. Khan, Intuitionistic fuzzy interior ideals of ordered semigroups, (to appear in J. Applied Math. Inform.)
  21. M. Shabir and A. Khan, Ordered semigroups characterized by their intuitionistic fuzzzy generalized bi-ideals, (to appear in Fuzzy Systems and Mathematics).
  22. A. Khan, Y. B. Jun, and M. Shabir, Fuzzy ideals in ordered semigroups, Quasigroups and Related Systems 16 (2008), 133-146.
  23. E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst 118 (2001), 467-447. https://doi.org/10.1016/S0165-0114(98)00402-3
  24. L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X