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THE STABILITY OF THE PERIODIC STATIONARY STOKES

EQUATIONS ON Rn

Jaiok Roh

Abstract. In this paper, we will consider the periodic stationary Stokes

equations on Rn. For the cube of the period, we set Ω =
∏n

i=1(0, Li).

And we will study the stability of the solutions on various functional
spaces, for the Stokes equations on Rn.

1. Introduction

Ob loza [12, 13] studied the Hyers-Ulam stability of the linear differential
equations, y′(x) + g(x)y(x) = r(x). And it was based on Ulam’s idea for
the stability of homomorphism. Thereafter, this subject for different types
of differential equations was discussed by many mathematicians. Consider an
open interval I = (a, b) of R with −∞ ≤ a < b ≤ +∞. And, for an n
times continuously differentiable function, y : I → C, let the linear differential
equation,

F
(
y(n), y(n−1), . . . , y′, y, x

)
= 0(1.1)

satisfies on I. For any ε > 0, we assume that there exists a solution y0 : I → C
to (1.1) such that

|y(x) − y0(x)| ≤ K(ε), for all x ∈ I,(1.2)

where lim
ε→0

K(ε) = 0, if y : I → C satisfies the differential inequality∣∣F(y(n), y(n−1), . . . , y′, y, x
)∣∣ ≤ ε.(1.3)

Then we say that the differential equation (1.1) satisfies the Hyers-Ulam stabil-
ity. One can find many interesting results for the linear differential equations
from the following references, [3, 4, 5, 8, 9, 11, 14, 17]. Also, for the partial
differential equations, one can refer to [1, 2, 6, 7, 10, 15].
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In this paper, we will study the stability of the solutions for the stationary
Stokes equations on Rn, with the periodic boundary condition. For the stability
of the periodic stationary Stokes equations, Roh-Jung[10] investigated for R2.
They used Ω = (0, L)× (0, L) for the cube of the period. In this paper, we will
use more general cube Ω =

∏n
i=1(0, Li) of the period.

We will consider the stationary Stokes problem with the following form: For
a given f , we want to find u and p such that

−∆u + ∇p = f in Rn(1.4)

∇ · u = 0 in Rn

u(x + Liei) = u(x) for all x ∈ Rn,(1.5)

where {e1, . . . , en} is the standard basis of Rn, Li is the period in the i-th
direction and Ω =

∏n
i=1(0, Li) is the cube of the period.

In next section, we will introduce the functional setting for the solution
spaces, with the periodic boundary condition. Finally, we will study the sta-
bility of the solutions of the stationary Stokes equations on Rn.

2. Functional spaces for the solution space

For the functional spaces of the solutions of the Stokes equations we will
use the Lebesque space L2(Rn) with the periodic boundary condition. For the
Sobolev space of functions which are in L2(Ω), with all their derivatives of
order ≤ m, we set by Hm(Ω). And with the inner product and the norm,

(u,v)m =
∑

[α]≤m

(Dαu, Dαu) and |u|m = [(u,u)m]1/2,

Hm(Ω) is a Hilbert space. We also consider the subset Hm
p (Ω) of Hm(Ω), the

space of periodic functions with the cube Ω of period :

(2.1) u(x + Liei) = u(x) for all i = 1, . . . , n.

For m = 0, H0
p (Ω) means L2(Ω).

Then, Hm
p (Ω) is also a Hilbert space and the functions in Hm

p (Ω) are char-
acterized by their Fourier series expansion
(2.2)

Hm
p (Ω) =

{
u : u =

∑
k∈Zn

cke
2iπk· xL , c̄k = c−k,

∑
k∈Zn

|k
L
|2m|ck|2 < ∞

}
,

where x
L = ( x1

L1
, · · ·, xn

Ln
) and k

L = ( k1

L1
, · · ·, kn

Ln
). We also denote

(2.3) Ḣm
p (Ω) =

{
u ∈ Hm

p (Ω) of type (2.2) : c0 = 0
}
.

Now, one note that Ḣm
p (Ω) is a Hilbert space with the norm

[∑
k∈Zn | kL |

2m|ck|2
]1/2

,

and Ḣ−m
p (Ω) is the dual space of Ḣm

p (Ω) for all m ∈ N. Now, we introduce an
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new Hilbert space, Hm
p (Ω) = {Hm

p (Ω)}n with the inner product and the norm,

((u,v)) =

n∑
i=1

(
∂u

∂xi
,

∂v

∂xi

)
, ∥u∥ = {((u,u))}1/2.

And for the solution spaces, we will use the following functional spaces,

V =
{
u ∈ H1

p(Ω) : ∇ · u = 0 in Rn
}
,(2.4)

H =
{
u ∈ H0

p(Ω) : ∇ · u = 0 in Rn
}
,(2.5)

where V is also a Hilbert space with this norm. More about the functional
spaces for the solutions with the periodic boundary condition can be found in
[16].

The stationary Stokes problem (1.4) with the periodic boundary condition

(1.5) have the following; Given f ∈ Ḣ0
p(Ω) or Ḣ−1

p (Ω), find u ∈ Ḣ1
p(Ω) and

p ∈ L2(Ω) such that

(2.6) −∆u + ∇p = f in Ω, ∇ · u = 0 in Ω.

For the Fourier expansions of u, p and f , we set as the following :

u =
∑
k∈Zn

uke
2πik· xL , p =

∑
k∈Zn

pke
2πik· xL , f =

∑
k∈Zn

fke
2πik· xL ,

where x
L = ( x1

L1
, · · ·, xn

Ln
).

Now, by (2.6), for every k ̸= 0 one obtain

(2.7) 4π2

∣∣∣∣kL
∣∣∣∣2uk + 2πi

k

L
pk = fk

and

(2.8)
k

L
· uk = 0,

where k
L = ( k1

L1
, · · ·, kn

Ln
).

Taking the scalar product of (2.7) with k
L and using (2.8) we find

(2.9) pk =
k
L · fk

2πi| kL |2
for k ∈ Zn, k ̸= 0

and by (2.7) we have

(2.10) uk =
1

4π2
∣∣ k
L

∣∣2
(
fk −

( k
L · fk) k

L

| kL |2

)
for k ∈ Zn, k ̸= 0.
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3. The stability of the solutions

Now, we will study the stability of the solutions for the n-dimensional sta-
tionary Stokes equations with the periodic boundary condition. The existence
of the solutions for the n-dimensional stationary Stokes equations with the peri-
odic boundary condition is very well known. With assumption of the existence
of the solution, we will study the various stability of the solutions.

Theorem 3.1. Let the function v ∈ Ḣ2
p(Ω) and q ∈ Ḣ1

p(Ω) satisfy the
equations

(3.1) −∆v + ∇q − f = g in Ω, ∇ · v = 0 in Ω,

where ∥g∥L2 ≤ ε and f ,g ∈ Ḣ0
p(Ω). Then there exist u ∈ Ḣ2

p(Ω) and p ∈ Ḣ1
p(Ω)

satisfying

(3.2) −∆u + ∇p− f = 0 in Ω, ∇ · u = 0 in Ω

such that

∥u− v∥Hi ≤ Ki∥g∥L2 ≤ Kiε for i = 0, 1, 2,(3.3)

∥p− q∥Hi ≤ Mi∥g∥L2 ≤ Miε for i = 0, 1(3.4)

for some constants Ki and Mi depending on Lmax where Lmax = max{L1, · ·
·, Ln}.

Proof. For existence of the solution u ∈ Ḣ2
p(Q) and p ∈ Ḣ1

p(Q), one can have
from (2.9) and (2.10). Next, to obtain (3.3) and (3.4) we denote the Fourier
expansions of v, q and g as the followings;

v =
∑
k∈Z2

vke
2πik· xL , q =

∑
k∈Z2

qke
2πik· xL , g =

∑
k∈Z2

gke
2πik· xL ,

where x
L = ( x1

L1
, · · ·, xn

Ln
). By (2.9), (2.10) and (3.1) we have

(3.5) qk =
k
L · (fk + gk)

2πi| kL |2
for k ∈ Zn, k ̸= 0

and

(3.6) vk =
1

4π2| kL |2

(
(fk + gk) −

( k
L · [fk + gk]) k

L

| kL |2

)
for k ∈ Zn, k ̸= 0,

where k
L = ( k1

L1
, · · ·, kn

Ln
). And, due to (2.9), (2.10) and (3.2) we can get

(3.7) pk =
k
L · fk

2πi| kL |2
for k ∈ Zn, k ̸= 0

and

(3.8) uk =
1

4π2| kL |2

(
fk −

( k
L · fk) k

L

| kL |2

)
for k ∈ Zn, k ̸= 0,
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where k
L = ( k1

L1
, · · ·, kn

Ln
). Therefore, from (3.5) - (3.8), we obtain the Fourier

expansions of u− v and p− q as the following ;

(3.9) uk − vk = − 1

4π2| kL |2

(
gk −

( k
L · gk) k

L

| kL |2

)
, pk − qk = −

k
L · gk

2πi| kL |2
,

where k
L = ( k1

L1
, · · ·, kn

Ln
). Then, for |k| > 1, from (3.9) we have

|uk − vk| ≤
L2
max

4π2
|gk|,

where Lmax = max{L1, · · ·, Ln}. Next, to prove for |k| = 1, we assume k =
(k1, · · ·,kn) as ki = 0 for all i ̸= j and kj = 1 or −1. Then for gk = (g1k, · · ·, gnk),
we have

gk −
( k
L · gk) k

L

| kL |2
= wk,

where wi
k = gik for all i ̸= j, and wj

k = 0. Therefore, we have

(3.10) |uk − vk| ≤
L2
max

4π2
|gk|.

Hence, we have

(3.11) ∥u− v∥L2 =

[∑
k∈Zn

|uk − vk|2
]1/2

≤ L2
max

4π2
∥g∥L2 ≤ K1ε

and similarly we obtain

(3.12) ∥p− q∥L2 =

[∑
k∈Zn

|pk − qk|2
]1/2

≤ Lmax

2π
∥g∥L2 ≤ M1ε.

Also, for H1-norm, by (3.9) we get

(3.13) ∥u− v∥H1 =

[∑
k∈Zn

|k
L
|2|uk − vk|2

]1/2
≤ Lmax

2π2
∥g∥L2 ≤ K2ε

and

(3.14) ∥p− q∥H1 =

[∑
k∈Zn

|k
L
|2|pk − qk|2

]1/2
≤ 1

2π
∥g∥L2 ≤ M2ε.

Similarly, for H2-norm, we have

(3.15) ∥u− v∥H2 =

[∑
k∈Zn

|k
L
|4|uk − vk|2

]1/2
≤ 1

4π2
∥g∥L2 ≤ K3ε.

Hence, by (3.11) - (3.15), we complete the proof. □
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Remark 3.2. We will see that the constant in (3.10) is optimal. Assume
that Lmax = max{L1, · · ·, Ln} = Lj . Consider the function g as gk = 0 if
k ̸= (0, · · ·, 0, 1, 0, · · ·, 0), and

gk = (
ϵ√

n− 1
, · · ·, ϵ√

n− 1
, 0,

ϵ√
n− 1

, · · ·, ϵ√
n− 1

)

if k = (0, · · ·, 0, 1, 0, · · ·, 0) which means that every component equal to zero
except j-th component. Then the inequality (3.10) becomes to the equality.
Therefore, our Hyers-Ulam constant is optimal.

Corollary 3.3. Assume that the function v ∈ Ḣ2
p(Ω) and q ∈ Ḣ1

p(Ω)
satisfy the equations

(3.16) −∆v + ∇q − f = g in Ω, ∇ · v = 0 in Ω,

where f ∈ Ḣ0
p(Ω) and g ∈ H with ∥g∥L2 ≤ ε. Then there exist u ∈ Ḣ2

p(Ω) and

p ∈ Ḣ1
p(Ω) satisfying

(3.17) −∆u + ∇p− f = 0 in Ω, ∇ · u = 0 in Ω.

such that

∥u− v∥Hi ≤ Ki∥g∥L2 ≤ Kiε for i = 0, 1, 2,(3.18)

∥p− q∥Hi = 0 for i = 0, 1,(3.19)

for some constants Ki depending on Lmax where Lmax = max{L1, · · ·, Ln}.
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