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BOUNDARY VALUE PROBLEMS FOR
NONLINEAR PERTURBATIONS OF
VECTOR P-LAPLACIAN-LIKE OPERATORS

RAUL MANASEVICH AND JEAN MAWHIN

ABSTRACT. The aim of this paper is to obtain nonlinear operators
in suitable function spaces whose fixed points coincide with the so-
lutions of the nonlinear boundary value problems

(p()) = flt,u,u), U(w,w) =0,

where [ (u, ') = 0 denotes the Dirichlet, Neumann or periodic bound-
ary conditions on [0,77], ¢ : RN — R¥ is a suitable monotone homeo-
morphism and f : [0, T}xRY xRY — RY is a Carathéodory function.
The special case where ¢(u) is the vector p-Laplacian |ulP~*u with
p > 1, is considered, and the applications deal with asymptotically
positive homogeneous nonlinearities and the Dirichlet problem for
generalized Liénard systems.

1. Introduction

Let us consider the one-dimensional p— Laplacian operator (¢p(u')),
where p > 1 and ¢, : R — R is given by ¢,(s) = |s|P~2s for s # 0 and
¢,(0) = 0. Various separated two-point boundary value problems con-
taining this operator have received a lot of attention lately with respect
to existence and multiplicity of solutions. See for example, [2], [3], [5],
6], [11], [12), [13], [15], [16], [17], [18], [19], [20], [21], [23], [29], (32}, [33],
[34], [36], [37], [41], [42], [45], and the references therein.

Periodic boundary conditions for nonlinear perturbations of the p-
Laplacian have been considered in [14], [19], [22], [29], and [30].
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The case of separated two-point boundary conditions and ¢, replaced
by a one dimensional but not longer homogeneous operator ¢, has been
recently dealt with in a series of papers, like [1], [4], [8], [24], [25], [26],
[27],[28], [30], [31], [41], and [44].

The case of systems with ¢(u) = (@p(u1),... ,p(un)) and Dirichlet
boundary conditions has been considered in [7] and [46].

Our aim in this paper is to study existence of solutions of various
boundary value problems for some differential systems involving fairly
general vector-valued operator ¢. More explicitly, we will consider the
Dirichlet boundary value problem

(1.1) (¢())' = f(t,u, ), u(0) =0, «(T) =0,

the Neumann boundary value problem

(1.2) () = f(t,u, ), v(0)=0, w(T)=0,

and the periodic boundary value problem

(1.3) () = flt,w,v), u(0)=wu(T), v'(0) =v(T),

where the function ¢ : RY — RY satisfies some monotonicity condi-
tions which ensure in particular that ¢ is an homeomorphism onto RY.

Our results apply to a large class of nonlinear operators (¢(u'))’, which
contains various vector versions of p—Laplacian operators like, for x =

(z1,--- ,zn) € RY, and |z| its Euclidean norm, ¢(z) = ,(z) = |z[P 2z,
for z # 0, ¥,(0) =0, (p > 1), and ¢(z) = (gbpl (z1), - -~¢pN(xN)>, with,
foreach?=1,--- N, p; > 1, and ¢, : R — R is the one dimensional

p;—Laplacian.

If1=[0,T), f: I xR¥xRY — R¥ is assumed to be a Carathéodory
function. By a solution of (1.1), (1.2) or (1.3), we will understand a
function u : I — R¥ of class C! with ¢(u') absolutely continuous, which
satisfies (1.1), (1.2) or (1.3) a.e. on I.

Throughout the paper | - | will denote absolute value, and the Eu-
clidean norm on RY, while the inner product in RY will be denoted
by (-,-). Also for N > 1, we will set C = C(I,RY), C! = CY{I,R"),
Co = {u e C|u0) =uT) =0}, C} ={ueC"|u0)=ulT) =0}
Cy={ueC|v0)=d4T) =0} Cr={uecC]|u0)=1uT}
Ch = {u € C'| u(0) = u(l),u(0) = «(T)}, L? = LP(I,RY), and
Wi? = WY»(I,RY), p > 1. The norm in C and its subspaces will be
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denoted by || - ||o, the norm in C' and its subspaces by || - ||;, and the
norm in L? by || - ||r». We shall also, when appropriate, identify to R"
the subspace of constant functions over I.

This paper is organized as follows. In Section 2, we introduce the
monotone type conditions on the function ¢ we will consider and show
some important examples of functions ¢ which verify those conditions.

In Section 3, we introduce a notion of mean-value of a function asso-
clated to ¢ which will be useful, in Section 4, to solve non-homogeneous
p-Laplacian-like systems with various boundary conditions.

In Section 5, we reduce (1.1), (1.2), and (1.3) to fixed point problems
in suitable subspaces of C!. In the Dirichlet and Neumann case, those
results extend to the vector case earlier ones of [25] and [24]. In the
periodic case, they were first given in [35]. They generalize to our situ-
ation some well known continuation theorem [38, 39, 40, 43}, obtained
in the framework of Leray-Schauder or coincidence degree for nonlin-
ear perturbations of linear differential operators with various boundary
conditions. Indeed our approach can be viewed as an extension of coin-
cidence degree to some quasilinear problems obtained by using classical
Leray-Schauder degree theory, instead of the more sophisticated degree
theory for mappings of type (S), used in [29)].

In Section 6, combining Leray-Schauder degree theory with the results
of Section 5, we state and prove some existence theorems for problems
(1.1), (1.2) and (1.3) when f is an asymptotically autonomous, odd and
(p — 1)-positive homogeneous system.

2. A class of monotone mappings

Let ¢ : RN — RY be a continuous function which satisfies the follow-
ing two conditions:

(H,) (Strict monotonicity). For any x1,20 € RN, z; # xy,
(¢(z1) — d(22), 21 — 32) > 0,

(Hs) (Coercivity). there exists a function o : [0, +o0o[— [0, +00], a(s) —
+00 as s — 400, such that

(p(z),z) > allz|)|z|, forall 2zcRV.
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It is well known that under these two conditions ¢ is an homeomorphism
from RY onto RV, satisfies (H,) and that |¢™*(y)| — +o0 as [y| — +o0
(see [9], Ch. 3).

Let us first give some examples of simple operators ¢ for which con-
ditions (H;) and (Hs) are satisfied.

EXAMPLE 2.1. Let ¢ be an homeomorphism from R onto R. Then
& is either increasing or decreasing. Clearly in the first case, ¢ satisfies
(H,) and (Hs) while in the second case, —¢ does.

ExAMPLE 2.2. For p > 1, let 9, : RY — RY be given by
P(z) = |z[Pz for z#0, p(0) =0.

Then 1, is an homeomorphism from RY onto RY with inverse

Yy (2) = oz,

where
o= P
p—1
Let now z,y € RY; from the inequality

(Wp(z) = Yp(y), = — y) = (27" = |yP ) (J2| = y]) 2 0,
it follows immediately that (¢,(z) —¥,(y), z —y) = 0 implies z = y, and
thus (H,) holds. Also (Hy) follows from (y,(x),z) = |zIP = |z[P~"|x].

EXAMPLE 2.3. More generally, we can consider any ¢ = V®, with
® : RY — R of class C! and strictly convex, satisfying (H2). An inter-
esting example of this class is given by ®(z) = ekl® —|z|? — 1, for which
(VE(z), 1) =2 (eW - 1) |27, and (Ho) is satisfied.

EXAMPLE 2.4. Further examples can be obtained from the following
proposition, which is proved in [35].

PROPOSITION 2.1. Fori=1,---k, let N; € N and v; : R¥ — R™ be
a function which satisfies the following conditions.
(i) (¥i(2) — i(w), 2 — y); > 0, (with (-, -); denoting the inner product
in RM) for any z,y € RY with equality holding true if and only if
z2=Y;
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(ii) there exists a function a; : [0,4+00) — [0,+00), a;(s) — +oo as
§ — +o0, such that (;(2),z); > o;(|2])[2], for all z € RM.

Then the function
k

VIR IR o = o) = o) = (e, -+ (o),

i=1

k
satisfies conditions (H,) and (H,) with N = Y N;,.

i=1

3. Generalized mean values

The following system of nonlinear equations associated to a monotone
mapping ¢ of the type considered in Section 2 plays a big role in the
study of various boundary value problems associated to the Laplacian-
type operator defined through ¢. For fixed [ € C, let us define

1 T

(3.4) Gila) = & / 6~ (a+1(t)) dt.
T Jo

The following proposition is proved in [35].

ProposITION 3.1. If ¢ satisfies conditions (H,) and (H,), then the
function G| has the following properties :

(i) For any fixed | € C, the equation
(3.5) Gi(a) =0

has a unique solution —Q4(1).
(ii) The function Q, : C — RY, defined in (i), is continuous and sends
bounded sets into bounded sets.

An easy but useful property of @y is the following one.

PROPOSITION 3.2. If, in addition, ¢ is odd, then the mapping Qs
defined by Proposition 3.1 is odd.

Proof. If ¢ is odd, the same is true for ¢~!. By definition, we have

T
/0 67 (—Qu(—1) — I(t)) dt = 0,
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and hence -
| o @iy a=o
By the uniqueness of the solution of G;(a) = 0, this implies that
Qo(—1) = =Qs(1). O

When ¢ = I, equation (3.5) reduces to

/T[a+l(t)] dt =0,

and has the unique solution

1 T
- =—-Q(
o=-7 [ ts)s=—Qu),
where
1 T
Q:L'— RV, lr—»—/ I(s)ds,
T Jo

is the mean-value operator. So, @; = @ and Q4 can be seen as a
genetalized mean-value operator associated to the mapping ¢. This is
illustrated by the following results, dealing with the special case ¢ = v,,
which are proved in [35].

PROPOSITION 3.3. For eachu € C, there exists a uniqueu, = Qy,. (u) €
RY such that the function G, := u — U, satisfies the relation

/0 pli(t)) dt = 0.

Furthermore, the mapping u — 7, is continuous and takes bounded sets
of C into bounded sets of RV,

REMARK 3.1. For p = 2, T, reduces to the usual mean value u = Qu
of u. Therefore, we can refer to @, as the p-mean value of u.

The following Sobolev-type inequality associated to the p-mean value
of a scalar function u extends standard ones for p = 2, and is proved in
[35)].
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PROPOSITION 3.4. Ifu € W'P(I,R"), then one has the inequality
. 1
(3.6) uplle < T7 || 10,

where
I = e 155

N T 1/p
nwm:tzllwﬂ
j=1

and

4. Non-homogeneous Dirichlet, Neumann and periodic bound-
ary value problems

Let us first consider the nonhomogeneous Dirichlet boundary value
problem

(4.7) (8()) = h(t), u(0)=0, u(T) =0,
where h € L'. We define H : L' — C by

(4.8) HR)(1) = /0 h(s)ds,

and @1 : C — C by

(4.9) 7 (w)(t) = ¢~ (v(t)) (te).

It is clear that ®~! is continuous and sends bounded sets into bounded
sets.

LEMMA 4.1. For each h € L', (4.7) has a unique solution given by
(4.10) u=Ho® 'o(I—-Q4)oH(h):=Kp(h).
Proof. By integrating from 0 to t € I, we find that (4.7) is equivalent

to

(411)  ¢(W()) = a+ H(h)(t), u(0) =0, w(T)=0,

where H is defined by (4.8) and a € R” is a constant. (4.11) is in turn
equivalent to

W(t) = ¢ (a+ HB)(D), u(0) =0, u(T) =0,
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and hence to
(412)  u(t) = /0 o (a+ H(R)(s)) ds, w(T) = 0.

The remaining boundary condition at T’ provides the system of equa-
tions

T
(4.13) / ¢ (a+ H(h)(s)) ds =0,
0
which, by Lemma 3.1, has the unique solution
a = —Qy(H(h)),

with Qg0 H : L' — RY a continuous mapping sending bounded sets of
L! into bounded sets of RV,
Thus (4.7) has the unique solution

/¢ —Qu(H(R)) + H()(s)] ds
(4.14) (Hod™ o (I—Qy) o H(R)| (1) 0

Using arguments quite similar to those of Lemma 2.1 of [35], one can
prove the following compactness result.

LEMMA 4.2. The operator Kp is continuous and sends equi-integrable
sets in L! into relatively compact sets in C§.

When ¢ = I, simple integrations by part show that (4.14) is equivalent

t):/o G(t,s)h(s)ds

L_-1)s for 0<s<t
e T - -
G(t,s) { E%—lgt for t<s<T

is the classical Green function.

to

where

Let us now consider the non-homogeneous Neumann boundary value
problem

(4.15) (¢(u))’
where h € L.

il
el
e
o~
~
:\
—_
=
=
Il
L
:\
—~
~
~
I
=
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We define the projector P by
(4.16) P:C—C, uwr u(0).
The necessary condition for the solvability of (4.15)

(4.17) / ' h(s)ds =0

is obtained by integrating both members of (4.15) over I and using the
boundary conditions. The following result shows that it is also sufficient.

LEMMA 4.3. For each h € L' satisfying (4.17), the solutions of (4.15)
are given by
(4.18) u=Pu+Ho® ' o[p(0) + H(h)] = Pu+Kn(h).
Proof. If (4.17) holds, then (4.15) is equivalent to
¢(u'(t)) — ¢(0) = H(h)(?),
hence to

w(t) = ¢~ (6(0) + H(W)(),

whose solutions are given by
¢
ut) = w(0)+ [ 67 (0(0) + H®()) ds,

(4.19) —Pu+Hod lo [¢(o> + H(h)] ().

REMARK 4.1. If we assume that
¢(0) =0,
then (4.18) takes the simpler form
w=Pu+Hod o H(h).

Following the lines of the proof of Lemma 2.1 of [35], one can prove
the following compactness result.

LEMMA 4.4. The operator Ky is continuous and sends equi-integrable
sets in L' into relatively compact sets in C},.
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Let us finally consider the non-homogeneous periodic boundary value
problem

(420)  (d(u)) =h(t), w(0)=u(T), v (0)="1v'(T),

where h € L'. By integrating both members of (4.20) over I and using
boundary conditions, we find that (4.17) is again a necessary condition
for the solvability of (4.20). The following result shows that it is also
sufficient.

LEMMA 4.5. For each h € L' such that (4.17) holds, the solutions of
(4.20) are given by

(4.21) u=Pu+Ho® o (I — Qy) 0 H(h) :== Pu+ Kp(h).

Proof. Integrating (4.20) from 0 to ¢ € I, we find that it is equivalent
to

(4.22) ¢ (t)) = a + H(R)(®),

where a € RY is a constant. The boundary conditions imply that

% /OT 67\ (a + H(R)(t)) dt = 0,

so that, by Lemma 3.1, a = —Q4 o H(h). By solving for v’ in (4.22) and
integrating, we find

(423)  u(t) =w(0) + H {47 [-Qu(H(h)) + H(R)]} (1),
which is clearly equivalent to (4.21). O
The following compactness result is Lemma 2.1 of [35].

LEMMA 4.6. The operator Kp is continuous and sends equi-integrable
sets in L! into relatively compact sets in Ct.

5. Fixed point formulations for the nonlinear boundary value
problems

Let now f : I x R¥ x RN — R¥ be Carathéodory. We shall denote
by N;: C' — L' the Nemitsky operator associated to f defined by

[N @) = (), w').
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We first consider the nonlinear Dirichlet problem

(5.24) (@)Y = ft,u, ), u(0) =0, w(T) = 0.

THEOREM 5.1. Problem (5.24) is equivalent to the fixed point prob-
lem

(5.25) u=Ho® 'o(I-Q4)0H o N(u) =GP (u)

in the space C}, and gj? is a completely continuous mapping of C} into
itself.
Furthermore, if $(0) = 0, then GP = 0. Finally, if ¢ is odd and

(526) f(t1 —U, _'U) = -f(ta u, U)
for all (u,v) € RY x R and almost all t € I, then G? is odd.

Proof. The result follows immediately from (4.10), Lemma 4.1, and
Proposition 3.2. O

A similar fixed point operator was given in [25] and [32] in the scalar
case, and in [46] for the special case of ¢(u) = (d),,(ul), . ,¢p(uN)).

Let us consider now the nonlinear Neumann problem

(5.27) (p(u)) = ft,u,v'), «'(0)=0, ¥/(T)=0.

THEOREM 5.2. Problem (5.27) is equivalent to the fixed point prob-
lem

(5.28) ,
u=Pu+QNys(u)+Hod ' o[¢(0)+ H(I — Q)Ny(u)] := g}"(u)

in the space C};, and g}V is a completely continuous mapping of C}; into
itself.
If $(0) = 0, G’ takes the simpler form

Pu + [Q—i—Ho(I)”l oH(I—Q)] o N¢(u).
Furthermore, if condition (5.26) holds and ¢ is odd, then g;V is odd.
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Proof. Problem (5.27) can be written, equivalently,
(5.29) (¢(u)) = (I - Q)Ny(u), ¥'(0) =0, w(T) =0, @Nys(u) =0,

and hence, by the discussion of Section 4, is equivalent to the operator
equations in C},

(5.30) w— Pu— Ho® " o[¢(0) + H(I — Q)N;(u)] =0, QN;(u) =0.

But, as the two equations in (5.30) take values in supplementary sub-
spaces of C}, they are in turn equivalent to the unique fixed point prob-
lem (5.28). The remaining conclusions follow from Lemma 4.2, Remark
4.1, and Proposition 3.2. O

A similar fixed point operator was given in [24] in the scalar case.

Let us consider finally the nonlinear periodic problem

(5.31) (@) = ft,u,w), w(0) = u(T), w(0) = w/(T).

THEOREM 5.3. Problem (5.31) is equivalent to the fixed point prob-
lem

(5.32)
u = Pu+ [Q+Ho©—1o(I—Q¢)oH(I—Q)] o Ny(u) == gf(u)

in the space C}, and G is a completely continuous mapping of C} into
itself. Furthermore, if (5.26) holds and ¢ is odd, then gf’ is odd.

Proof. We write (5.31), equivalently,

(5.33)
(p(u)) = (I — Q)Ny(w), QNy(u) =0, u(0) = u(T), v'(0) = v'(T).

Using the discussion of Section 4, we see that (5.33) is equivalent to the
operator equations in C}

(5.34)
w—Pu—[Ho® " o(I—Qs)0H(I — Q)] o Ny(u) =0, QNy(u) =0.

Like in the Neumann problem, the two equations in (5.34) take values

in supplementary subspaces of C},, and hence they are equivalent to the

unique fixed point problem (5.32). The other properties follow immedi-

ately from Lemma 4.3 and Proposition 3.2. O
This operator was first introduced in [35].
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Notice finally that, in the above problems, the Nemitsky operator N
could be replaced by a continuous abstract nonlinear operator N from
Cl x [0,1] (resp. C& x [0,1] or C x [0,1]) into L, which sends bounded
sets into equi-integrable sets. One then obtains the family of abstract
differential equations

() =N(u,X), Ae0,1],
and the corresponding fixed point operators are completely continuous
from C} x [0,1] (resp. Ck x [0,1] or C} x [0,1]) into C} (resp. C} or
Ct).

6. Applications to asymptotically homogeneous systems

As an application of the results of Section 5, let us consider the prob-
lem

(6.35) (Y (W) = h(u,v') + e(t,u,v), I(u,u) =0,
where h : RN x R¥Y — R¥ is continuous, e : I x R¥ x RN — RV is
Carathéodory, and

I(u,u') =0
denotes the Dirichlet, Neumann or periodic boundary conditions over
[0,T].

THEOREM 6.1. Assume that the following conditions hold.

(1) h(ku, kv) = kP~Lh(u,v) for all k > 0 and all (u,v) € RY x RY,
(2) h(—u, —v) = —h(u,v) for all (u,v) € RN x RY.

(3) limyyj4jo|—co ﬁi;—l% 0, uniformly a.e. int € I.
(4)

4) The problem
Wp(¥)) = h(y,y), Uy, ¥) =0,

has only the trivial solution y = 0.

Then problem (6.35) has at least one solution.

Proof. We consider the homotopy
(6.36) (W () = h(u,u)+ Ae(t,u,u’),
l(u,v') = 0, Ae0,1],

and show that there exists some R > 0 such that, for each A €
[0,1] and each possible solution u of (6), one has ||y|l; < R, with
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llvll: = llyllo + l¥/]lo- If this is the case, then the Leray-Schauder degree
drs[I — G (-, A), B(R),0] (see e.g. [9]) is well-defined and independent of
A, where G denotes the fixed point operator associated in Section 5 to
the boundary value problem (6). Furthermore, G(-,0) is odd, and hence,
by Borsuk-Ulam theorem [9],

dps{I — G(-,0), B(R),0] =1 (mod 2).

The result will then follow from Leray-Schauder’s existence theorem [9].

If the claim about the possible solutions does not hold, one can find
a sequence {\,} in [0,1] and a sequence {u,} of solutions of (6) with
A = ), such that ||u,||; — oo when n — oco. If we set

Un

yn=| n=12,...,

‘unHI’

it follows from assumption (1) that

6.37) () = h(¥a¥n) + M

yn,yl) = 0,n=1,2,....

As |lyz]l1 = 1 for all n, we can assume, going if necessary to a subse-
quence, that y, — y uniformly in I, for some y € C satisfying respec-
tively, in the Dirichlet and periodic cases, the boundary conditions

y(0) =0, y(T) =0; y(0) =y(T).
Letting z, = 9,(y,), it is clear that {2,} is bounded in C' and it follows
from equation (6.37) and from assumption (3) that {2} is bounded in
C as well. Thus, up to a further subsequence, we can assume that {z,}

converges uniformly on I to some z € C, which, in the Neumann and
periodic cases respectively satisfies the boundary conditions

2(0) =0, 2(T) =0; =2(0) = z(T).
Notice that, then, {y/} converges uniformly on I to ¥, (z), and that

(6.38) lyllo + by (2)]lo = 1.
Now, problem (6.37) is equivalent to

Yo = Up(2a)

(6.39) =z, A (Yny Ve (20)) + An

e(t, lunll1yn l[unll197)
a7 ’

e(t, ||un|l1yn, [[tnl1%p (20))
[ ’

m(Yn, 2n) =0, n=1,2,...,
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with m(y, z) = (y(0),y(T)) in the Dirichlet case, m(y, z) = (2(0), z(T))
in the Neumann case, and m(y, z) = (y(0) — y(T),y'(0) — ¥'(T)) in the
periodic case. Using the above convergence results and an integrated
form of (6.39), it is easy to see that (y,z) will be a solution of the
problem

y/ = wp‘(z)v Y= h(yaz/)p‘(z))
l(ya Z) =0,

and hence y will be a solution of the problem

Wp(¥)) =Ry, ¥), Uy, y)=0.

But then using assumption (4), it follows that y = 0, and hence ¥, (2) =
0, a contradiction to (6.38). O

By using more sophisticated properties of Leray-Schauder’s degree for
Sl.invariant operators, the following extension of Theorem 6.1 has been
proved in [35].

THEOREM 6.2. Assume that the following conditions hold.

(1) h(ku kv) = kP"'h(u,v) for all k > 0 and all (u,v) € RN x RV,
(2) dglh(-,0),b(Ry),0] # 0 for some Ry > 0.

(3) limyyi1je)—oo _IuJIJiITI)P“Ll = 0, uniformly a.e. int € I.

(4) The problem

Wp(y) = h(y:¢),  y(0) = y(T), ¥'(0) = y'(T),

has only the trivial solution y = 0.

Then problem (6.35), with periodic boundary conditions, has at least
one solution.

We also refer to [35] for other continuation theorems in the periodic
case and various applications to existence conditions.

As a special case of Theorem 6.1, we get the following result, which
is classical in the scalar case.

Recall that x4 € R is an eigenvalue of minus the p-Laplacian with the
boundary conditions [(u, u') = 0 if the problem

(Yp(u)) + ppy(u) =0, I(u,u') =0,

has a non-trivial solution.
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COROLLARY 6.1. If i1 is not an eigenvalue of minus the p-Laplacian
with boundary conditions I(u, ') = 0, then, for each e € L', the problem

(W) + pibp(u) = €(t), U(u,w) =0,

has at least one solution.

7. Liénard-type perturbations of the vector p-Laplacian with
Dirichlet conditions

Let us give some improvement of Corollary 6.1 in the case of Dirichlet
boundary conditions.

Let F : RY — R be of class C2.

THEOREM 7.1. If the (n x n)-matrix A is such that

(7.40) (Au,u) < alul®
for all u € RY and some
ﬂ p
(7.41) a< ( T) ,
where
42 o(p— )P
(7.42) m=2(p—1) (7 /)’

then the Dirichlet problem
(7.43)  [hp(u) + VF(u)] + Apy(u) = e(t), u(0)=0, w(T) =0
has at least one solution for each e € L'.
Proof. Consider the homotopy
(7.44) () + AVF(w)] + Athy(u) = Aelt),
u(0) =0, u(T) =0, Ael0,1],

and, for A € [0,1] fixed, let u be a possible solution of (7.44). Then,
taking the inner product of the differential system by u, we obtain

<[¢P(u/) + AVF(U)]/’ U‘> + <Awp(u)7 u> - ’\<e’ u>’
and hence
(hp(W)+AV F (u), u) = (Yp(u), u') =MV F (u), ) uP 2 (Au, u) = Me, u).
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Integrating this identity over I and using the boundary conditions and
assumption (7.41), we get

T T
(7.45) / WP —a / ul? < llell sl
0 0

As observed by del Pino [10], the spectrum of minus the vector p-
Laplacian with Dirichlet boundary conditions is the same as the spec-
trum of minus the scalar p-Laplacian with the same boundary conditions,
and hence (see e.g. [12]) the smallest eigenvalue A is given by

v ()

where 7, is defined in (7.42). By the variational characterization of \;,
we have the generalized Poincaré’s inequality

T T
A / P < / 3
0 0

which, introduced in (7.45) implies that

a
(7.46) (“x) B < lelnllule.

But now Sobolev inequality for functions u € Wol P implies the existence
of a constant S > 0 such that

el < Sllwils,

which, combined with (7.46), and using assumption (7.41), implies that

1 1
. p—1 P p-1
(7.47) nu'nus<s“ﬂ> , nunms<s—ﬂ?¥—’) -

- L=

Those inequalities imply immediately the existence of R’ > 0 such that
T
(a) [ INTF@Y A () - x| < R,
0

As, foreach j € {1,--- , N}, the function u; has mean value zero, there is
at; € [0,T] such that u}(t;) = 0. Then by integrating the j* component
of the equation in (7.44) from ¢} to ¢ € I, we obtain

/t
£

[ () P2 ud (8)) < A(VF(U))' + A (juP) = || < R,
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which by elementary means implies that |«/(t)[P"! < R". Thus there is
a positive constant M such that

W' (t)] < M foralltel,

and hence there is R > 0, such that |jul|; < R for all possible solutions
of (7.44). Consequently, if GP(-, A) is the fixed point operator equivalent
to (7.44), it follows that for sufficiently large R > 0, the Leray-Schauder
degree drs[I — GP(-, ), B(R), 0] is well-defined and independent of .
and hence equal to dis[I — GP(-,0), B(R),0]. As GP(-,0) is odd, this
last Leray-Schauder degree is an odd number, and hence GP has a fixed
point and problem (7.43) has at least one solution. O

REMARK 7.1. Interesting special cases of Theorem 7.1 correspond to
the choice of F'(u) = c|u|?/q, (g > 1, ¢ € R), for which the equation in
(7.43) becomes

[ (W) + ctbg(w)] + Appl(u) = e(t),

u
and the choice of F(u) = (1/2){Cu,u), (C a symmetric matrix), for
which the equation in (7.43) becomes

(wp(ul))/ + Cu' + Apy(u) = e(t).

The case of a scalar equations reads as follows.

COROLLARY 7.1. If f : R — R is continuous and if a € R satisfies
condition (7.41), then the Dirichlet problem

(7.49)  (¢p(w) + f(wu' + agp(u) = e(t), u(0) =0, w(T) =0

has at least one solution for each e € L.
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