• Title/Summary/Keyword: On-demand Vehicle

Search Result 473, Processing Time 0.034 seconds

A Pickup and Delivery Problem Based on AVL and GIS

  • Hwang, Heung-Suk
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • The fundamental design issues that arise in the pickup and delivery system planning are optimizing the system with minimum cost and maximum throughput and service level. This study is concerned with the development of pickup and delivery system with customer responsive service level, DCM(Demand Chain Management). The distribution process and service map are consisted of manufacturing, warehousing, and pickup and delivery. First we formulated the vehicle pickup and delivery problem using GIS-VRP method so as to satisfy the customer service requests. Second, we developed a GUI-type computer program using AVL, automated vehicle location system. The computational results show that the proposed method is very effective on a set of test problems.

Maglev, Petroleum Demand, and Global Warming

  • Rote, Donald M.
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • According to the Intergovernmental Panel on Climate Change, combustion of petroleum-based and other fossil fuels results in the increasing atmospheric concentrations of $CO_2$ and other greenhouse gases (GHG's) and is a major contributing factor to global warming. This paper includes estimates of the energy and petroleum use and the GHG emissions caused by the transportation sector. It then examines the extent to which diversions to alternative modes may be possible. Estimates are made of the potential reductions in energy and petroleum use and GHG emissions resulting from diversions from conventional modes, to both low-speed urban and high-speed intercity maglev vehicle trips based on "well-to-wheel" (i.e. total-fuel-cycle) calculations.

A Study on the Material Supply Man-Hour Computation based on MODAPTS in Automobile Assembly Line (MODAPTS 기반 자동차 조립공정 부품공급 공수 산정에 관한 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.127-135
    • /
    • 2016
  • Korean automobile industrial is in a difficult situation because of more competitive global market and lower demand. Therefore, domestic as well as global automobile manufacturers are making greater efforts in cost reduction to strengthen the competitiveness. According to statistical data, logistics cost in domestic manufacturers is higher than advanced countries. In this study, we developed program to effectively manage standard time of procurement logistics, and confirm based on A-automobile factory data. For the purpose, we develop the system which is possible to manage standard time as well as calculate man-hour. Program is not just for calculating and managing standard man-hour, scenarios analysis function will be added to calculate benefit while introduce logistics automated equipment. In this study we propose scenario using AGV instead of electric motor while move component. In the scenario analysis, job constitution is changed, and then we use system to compare the result. We can confirm standard man-hour is reduced from 22.3M/H to 14.3M/H. In future research, it is necessary scenario analysis function, and develop algorithm with realistic constraint condition.

A Study on the Trigger Technology for Vehicle Occupant Detection (차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구)

  • Lee, Dongjin;Lee, Jiwon;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.120-122
    • /
    • 2021
  • Currently, as demand for cars at home and abroad increases, the number of vehicles is decreasing and the number of vehicles is increasing. This is the main cause of the traffic jam. To solve this problem, it operates a high-ocompancy vehicle (HOV) lane, a multi-passenger vehicle, but many people ignore the conditions of use and use it illegally. Since the police visually judge and crack down on such illegal activities, the accuracy of the crackdown is low and inefficient. In this paper, we propose a system design that enables more efficient detection using imaging techniques using computer vision to solve such problems. By improving the existing vehicle detection method that was studied, the trigger was set in the image so that the detection object can be selected and the image analysis can be conducted intensively on the target. Using the YOLO model, a deep learning object recognition model, we propose a method to utilize the shift amount of the center point rather than judging by the bounding box in the image to obtain real-time object detection and accurate signals.

  • PDF

Comparison of Topology Based-Routing Protocols in Wireless Network

  • Sharma, Vikas;Ganpati, Anita
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.61-66
    • /
    • 2019
  • VANET (Vehicular Ad-hoc Network) is a mobile Ad-hoc Network which deals with the moving vehicles. VANET supports Intelligent Transport Systems (ITS) which is related to different modes of transport and traffic management techniques. VANETs enabled users to be informed and make them safer. VANET uses IEEE 802.11p standard wireless access protocol for communication. An important and necessary issue of VANET is to design routing protocols. In a network, communication takes place by the use of the routing protocols. There are mainly two types of communications used such as Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) in VANET. Vehicles can send and receive messages among them and also to and from infrastructure used. In this paper, AODV, DSR and DSDV are compared by analysing the results of simulation on various metrics such as average throughput, instant throughput, packet delivery ratio and residual energy. Findings indicates utilization of AODV and DSR is more applicable for these metrics as compared to DSDV. A network simulator (NS2) is used for simulation.

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.

Development of Dynamic Vehicle Service Simulation Tool based on Node-RED (Node-RED 기반 동적 차량 서비스 시뮬레이션 툴 개발)

  • Ryu, Minwoo;Lee, Jongeon;Cha, Si-Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2022
  • As users' needs for customized services increase, the service provision method is changing from a vertical structural service provision method to a horizontal structural service provision method. This paradigm shift has led to a change from the way existing users find the content they want to find and provide customized needs of users by content providers. With the recent development of smartphones and various AI technologies, demand for providing seamless services such as smartphones is increasing in automobiles. However, it is difficult to provide services in line with changes in this service paradigm because automobile services provide services centered on finished car manufacturers rather than individually providing services tailored to user needs. In this paper, we develop a Node-RED-based dynamic vehicle service simulation tool so that users can use the service they want in cars. The simulation tool developed provides a simulation environment for services authored by the user using NodeRed by writing, registering, and using NodeRed.

Optimization for Vehicle Routing Problem with Locations of Parcel Lockers (물품보관소 위치를 고려한 차량경로문제 최적화)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.134-141
    • /
    • 2022
  • Transportation in urban area has been getting hard to fulfill the demand on time. There are various uncertainties and obstacles related with road conditions, traffic congestions, and accidents to interrupt the on-time deliveries. With this situation, the last mile logistics has been a keen issue for researchers and practitioners to find the best strategy of the problem. A way to resolve the problem is to use parcel lockers. Parcel locker is a storage that customers can pick up their products. Transportation vehicles deliver the products to parcel lockers instead of all customer sites. Using the parcel lockers, the total delivery costs can be reduced. However, the inconvenience of customer has to increase. Thus, we have to optimal solution to balance between the total delivery costs and customers' inconvenience. This paper formulates a mathematical model to find the optimal solution for the vehicle routing problem and the location problem of parcel lockers. Experimental results provide the viability to find optimal strategy for the routing problem as well as the location problem.

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

A Study on Bike Signal Operation Methods at Three-Legged Intersections (3지 교차로에서 자전거 신호운영방안에 관한 연구)

  • Heo, Hui-Beom;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.157-167
    • /
    • 2011
  • Many problems, such as unexpected delay and collision with pedestrians or vehicles, occur generally at signalized intersections where bicycle users are frequently involved. These problems have hindered bicycle users from riding bicycles on urban highways. The aim of this study is to suggest proper traffic signal operation methods for safe and convenient highway crossing of bicycles. Three types of crossing methods at signalized intersections are proposed and analyzed: (1) indirect left turn, (2) direct left turn on an exclusive bicycle lane, and (3) direct left turn on a bicycle box. The VISSIM simulation tests were conducted based on fifty-four operation scenarios prepared by varying vehicle and bicycle traffic volumes. Both delay and the number of stops are used as the measures of effectiveness in the analysis. The results from the three-legged signalized intersections suggested that (1) the indirect left turn is appropriate when vehicle demand is high while bicycle demand is not, (2) direct left turn on an exclusive bicycle lane is appropriate when both vehicle and bicycle demands are high, and (3) direct left turn on a bicycle box is appropriate when both vehicle and bicycle demands are light.