• 제목/요약/키워드: Numerical Diffusion

검색결과 1,018건 처리시간 0.025초

A GENERAL SOLUTION OF A SPACE-TIME FRACTIONAL ANOMALOUS DIFFUSION PROBLEM USING THE SERIES OF BILATERAL EIGEN-FUNCTIONS

  • Kumar, Hemant;Pathan, Mahmood Ahmad;Srivastava, Harish
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.173-185
    • /
    • 2014
  • In the present paper, we consider an anomalous diffusion problem in two dimensional space involving Caputo time and Riesz-Feller fractional derivatives and then solve it by using a series involving bilateral eigen-functions. Also, we obtain a numerical approximation formula of this problem and discuss some of its particular cases.

전단 증진된 난류확산의 수치적 연구 (Numerical Study of Shear-Enhanced Turbulent Diffusion)

  • 이창훈;최재호
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.944-951
    • /
    • 2001
  • The purpose of this study is to investigate the effect of shear on turbulent diffusion. Turbulent Couette flows at low Reynolds number are numerically simulated using a Lagrangian PDF method. Flow field and particle trajectories are computed and analyzed in detail. Statistics for particle dispersion obtained from numerical simulations is compared with the classical scaling relations for dispersion in a shear flow.

A UNIFORMLY CONVERGENT NUMERICAL METHOD FOR A WEAKLY COUPLED SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND WEAK INTERIOR LAYERS

  • CHAWLA, SHEETAL;RAO, S. CHANDRA SEKHARA
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.635-648
    • /
    • 2015
  • We consider a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous source term. The diffusion term of each equation is associated with a small positive parameter of different magnitude. Presence of discontinuity and different parameters creates boundary and weak interior layers that overlap and interact. A numerical method is constructed for this problem which involves an appropriate piecewise uniform Shishkin mesh. The numerical approximations are proved to converge to the continuous solutions uniformly with respect to the singular perturbation parameters. Numerical results are presented which illustrates the theoretical results.

300 mm 웨이퍼 위의 에어로졸 나노 입자의 증착 장비 개발을 위한 수치 해석적 연구 (Numerical Simulation of Deposition Chamber for Aerosol Nanoparticles Upward 300 mm Wafer)

  • 안강호;안진홍;이관수;임광옥;강윤호
    • 반도체디스플레이기술학회지
    • /
    • 제4권1호
    • /
    • pp.49-53
    • /
    • 2005
  • The nanoparticle deposition chamber, which is used for quantum dot semiconductor memory applications, is designed by means of numerical simulation. In this research, the numerical simulations for deposition chamber were performed by commercial software, FLUENT. The deposition of nanoparticles is calculated by diffusion force, thermophoresis and electrophoresis of particles. As a results, when the diffusion force was considered, the most of particles deposited in the wall of deposition chamber. But as considering thermophoresis and electrophoresis of particles, the particles were deposited wafer surface, perfectly.

  • PDF

NUMERICAL COMPARISON OF WENO TYPE SCHEMES TO THE SIMULATIONS OF THIN FILMS

  • Kang, Myungjoo;Kim, Chang Ho;Ha, Youngsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권3호
    • /
    • pp.193-204
    • /
    • 2012
  • This paper is comparing numerical schemes for a differential equation with convection and fourth-order diffusion. Our model equation is $h_t+(h^2-h^3)_x=-(h^3h_{xxx})_x$, which arises in the context of thin film flow driven the competing effects of an induced surface tension gradient and gravity. These films arise in thin coating flows and are of great technical and scientific interest. Here we focus on the several numerical methods to apply the model equation and the comparison and analysis of the numerical results. The convection terms are treated with well known WENO methods and the diffusion term is treated implicitly. The diffusion and convection schemes are combined using a fractional step-splitting method.

Muskingum-Cunge 홍수추적 방법의 오차해석 (Error Analysis of Muskingum-Cunge Flood Routing Method)

  • 김대근;서일원
    • 한국수자원학회논문집
    • /
    • 제36권5호
    • /
    • pp.751-760
    • /
    • 2003
  • 시간 및 공간가중치를 고정하지 않는 Muskingum-Cunge 홍수추적방법에 대한 오차해석을 수행하였다. 오차해석 결과 시간가중치와 공간가중치의 합이 1.0이상인 경우에는 홍수파가 진행하면서 증폭되어 수치해가 발산하였다. 시간가중치와 공간가중치의 합이 작을수록 수치확산이 크게 발생하였다. 격자의 해상도가 낮을수록 수치확산 및 수치진동이 크게 발생하였다. 수치실험과 자연하천에 대한 적용 결과, 공간가중치를 고정하지 않는 경우에는 공간가중치를 0.5로 고정하는 전통적인 Muskingum-Cunge방법보다 첨두의 감쇄가 큰 홍수파 모의에 효과적임을 알 수 있었다.

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations

  • Nguyen, T.Q.;Baroghel-Bouny, V.;Dangla, P.
    • Computers and Concrete
    • /
    • 제3권6호
    • /
    • pp.401-422
    • /
    • 2006
  • A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.

SPLINE DIFFERENCE SCHEME FOR TWO-PARAMETER SINGULARLY PERTURBED PARTIAL DIFFERENTIAL EQUATIONS

  • Zahra, W.K.;El-Azab, M.S.;Mhlawy, Ashraf M. El
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.185-201
    • /
    • 2014
  • In this paper, we construct a numerical method to solve singularly perturbed one-dimensional parabolic convection-diffusion problems. We use Euler method with uniform step size for temporal discretization and exponential-spline scheme on spatial uniform mesh of Shishkin type for full discretization. We show that the resulting method is uniformly convergent with respect to diffusion parameter. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. The obtained numerical results show that the method is efficient, stable and reliable for solving convection-diffusion problem accurately even involving diffusion parameter.

학교건물에서 냉방부하에 따른 열적 쾌적성 평가지표 비교 연구 (A Study on the Comparison of Thermal Comport Performance Indices for Cooling Loads in the Classroom)

  • 노광철;오명도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1274-1279
    • /
    • 2004
  • We performed the numerical study on the comparison of thermal comport performance indices for cooling loads in the classroom when the 4-way cassette air-conditioner is mounted on the ceiling. We investigated the velocity and the temperature distribution of the classroom as with respect to the variation of the air diffusion angle of the air-conditioner. Air diffusion performance index and Predicted mean vote were used for analyzing the characteristics of the thermal comport in the classroom and comparing their values each other. From the numerical results, we knew that the thermal comport is largely affected by the air diffusion angle and velocity of the air-conditioner. And we also found out that the qualitative tendency of the distribution between Air diffusion performance index and Predicted mean vote is very similar in all occupied zone.

  • PDF