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A UNIFORMLY CONVERGENT NUMERICAL METHOD FOR

A WEAKLY COUPLED SYSTEM OF SINGULARLY

PERTURBED CONVECTION-DIFFUSION PROBLEMS WITH

BOUNDARY AND WEAK INTERIOR LAYERS†

SHEETAL CHAWLA∗ AND S. CHANDRA SEKHARA RAO

Abstract. We consider a weakly coupled system of singularly perturbed

convection-diffusion equations with discontinuous source term. The diffu-
sion term of each equation is associated with a small positive parameter
of different magnitude. Presence of discontinuity and different parameters

creates boundary and weak interior layers that overlap and interact. A
numerical method is constructed for this problem which involves an appro-
priate piecewise uniform Shishkin mesh. The numerical approximations
are proved to converge to the continuous solutions uniformly with respect

to the singular perturbation parameters. Numerical results are presented
which illustrates the theoretical results.
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1. Introduction

An extensive research had been done on numerical methods for a single singu-
larly perturbed convection-diffusion differential equation [1]-[4], but for system
of equations very few works had been done. The classical numerical methods
fail to produce good approximations for singularly perturbed problems. Various
non-classical approaches produce better approximations and converge uniformly
with respect to the small perturbation parameter. In the literature [7]-[14] meth-
ods were available to obtain numerical approximation for system of singularly
perturbed convection- diffusion differential equations the source term are smooth
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on the whole domain. Farrell et.al [5]-[6] considered scalar singularly perturbed
convection-diffusion equation with discontinuous source term. The interior layers
in [6] were strong, in the sense that the solution was bounded but the magnitude
of the first derivative grew unboundedly as ε → 0, but in [5] they were weak,
in the sense that the solution and the first derivative were bounded but the
magnitude of the second derivative grows unboundedly as ε → 0. In this work,
we present a uniformly convergent numerical method for a weakly coupled sys-
tem of singularly perturbed convection-diffusion equations having discontinuous
source term with different diffusion parameters. The solution to such equations
has overlapping and interacting boundary and interior layers which makes the
construction of numerical methods and analysis quite difficult. Tamilselvan and
Ramanujam [15] considered the same problem but with equal diffusion parame-
ters.
Consider a weakly coupled system of singularly perturbed convection-diffusion
equations with discontinuous source term on the unit interval Ω = (0, 1), having
a single discontinuity in the source term at a point d ∈ Ω. Let Ω1 = (0, d)
and Ω2 = (d, 1). Let the jump in a function ω at a point d ∈ Ω given as
[ω](d) = ω(d+)− ω(d−). The corresponding boundary value problem is to find
u1, u2 ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2), such that

Lu := −Eu
′′
−Au

′
+Bu = f , x ∈ Ω1 ∪ Ω2. (1)

u(0) = u0, u(1) = u1, (2)

where E = diag(ε1, ε2), the coupling matrix A = diag(a1, a2) and B = (bij)2×2

with 0 < ε1 ≤ ε2 ≤ 1, f = (f1, f2)
T , and u = (u1, u2)

T . Assume for each i = 1, 2
and x ∈ Ω, the matrices A and B satisfy

ai(x) ≥ αi > 0, (3)

bij(x) ≤ 0, i ̸= j, b11(x) + b12(x) ≥ 0, b21(x) + b22(x) ≥ 0. (4)

Let α = min{α1, α2}. Further assume that the source terms f1, f2 are sufficiently
smooth on Ω \ {d}, and their derivatives have jump discontinuity at the same
point.

Notations. Throughout the paper, C denotes a generic positive constant and
C = (C,C)T denotes a generic positive constant vector, both are independent
of perturbation parameters ε1, ε2 and the discretization parameter N, but may
not be same at each occurrence. Define v ≤ w if vi ≤ wi, i = 1, 2, and |v | =
(|v1|, |v2|)T . We consider the maximum norm and denote it by ∥ . ∥S , where S is
a closed and bounded subset in Ω. For a real valued function v ∈ C(S) and for
a vector valued function v = (v1, v2)

T ∈ C(S)2, we define ∥ v ∥S= max
x∈S

|v(x)|

and ∥ v ∥S= max{∥ v1 ∥S , ∥ v2 ∥S}. Now let a mesh ΩN = {xi}Ni=0 be a set of
points satisfying x0 < x1 < · · · < xN = 1. A mesh function V = {V (xi)}Ni=0

is a real-valued function defined on ΩN . Define the discrete maximum norm
for such functions by ∥ V ∥ΩN= max

i=0,1,...,N
{V (xi)} and for vector mesh functions
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V = (V1, V2)
T = {V1(xi), V2(xi)}Ni=0 are used and define ∥ V ∥ΩN= max{∥

V1 ∥ΩN , ∥ V2 ∥ΩN }.

2. The continuous problem

Theorem 2.1 (Continuous maximum principle). Suppose u1, u2 ∈ C0(Ω) ∩
C1(Ω) ∩C2(Ω1 ∪ Ω2). Further suppose that u = (u1, u2)

T satisfies u(0) ≥ 0,
u(1) ≥ 0, Lu(x) ≥ 0 in Ω1 ∪Ω2 and [u′](d) ≤ 0. Then u(x) ≥ 0, for all x ∈ Ω.

Proof. Let u :=

{
e

−α(d−x)
4ε2 Θ, x ∈ Ω1,

e
−α(x−d)

2ε2 Θ, x ∈ Ω2.
Now let p and q be the points at which θ1(p) := min

x∈Ω
{θ1(x)} and θ2(q) :=

min
x∈Ω

{θ2(x)}. Assume without loss of generality θ1(p) ≤ θ2(q). If θ1(p) ≥ 0, then

there is nothing to prove. Suppose that θ1(p) < 0, then proof is completed by
showing that this leads to a contradiction. Note that p ̸= {0, 1}. So either
p ∈ Ω1 ∪ Ω2 or p = d.
In the first case for x ∈ Ω2,

(Lu)1(p) = e
−α(p−d)

2ε2 (−ε1θ′′1 (p) + (αε1ε2
− a1(p))θ

′
1(p) +

α
2ε2

(a1(p)− αε1
2ε2

)θ1(p)

+ (b11(p) + b12(p))θ1(p) + b12(p)(θ2(p)− θ1(p)) < 0.
In the second case, that is, p = d, we have [u ′](d) = [Θ′](d)− α

4ε2
Θ(d), and at a

negative minimum [Θ′](d) ≥ 0, which gives a contradiction. �

Lemma 2.2 (Stability Result). Let u = (u1, u2)
T be the solution of (1) − (2),

then,

∥u∥Ω ≤ Cmax{∥u(0)∥, ∥u(1)∥, ∥Lu∥Ω1∪Ω2}.

Proof. Define the function Ψ±(x) := max {∥u(0)∥, ∥ u(1)∥, ∥Lu∥Ω1∪Ω2} (2 −
x, 2 − x)T ± u(x). Then Ψ±(0) ≥ 0 , Ψ±(1) ≥ 0, LΨ±(x) ≥ 0 for each
x ∈ Ω1 ∪ Ω2, and [Ψ± ′ ](d) = ±[u ′](d) = 0, since u ∈ C1(Ω)2. It follows
from the maximum principle that Ψ±(x) ≥ 0 for all x ∈ Ω, which leads to the
required bound on u . Consequently, the problem (1) − (2) has a unique and
stable solution. �

To derive sharper bounds on the derivatives of solution, the solution is decom-
posed into a sum, composed of a regular component v and a singular component
w . That is, u = v + w . The regular component v , can be written in the form

v = v0+

(
ε1ε2 0
0 ε1ε2

)
v1 +

(
ε21ε

2
2 0

0 ε21ε
2
2

)
v2, where v0 = (v01, v02)

T ,

v1 = (v11, v12)
T and v2 = (v21, v22)

T are defined respectively to be the solutions
of the problems

−Av ′
0 +Bv0 = f , v0(1) = u(1), x ∈ Ω1 ∪ Ω2,

−Av ′
1 +Bv1 =

( 1
ε2
1
ε1

)
v ′′
0 , v1(1) = 0 , x ∈ Ω1 ∪ Ω2,
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and

Lv2 =

( 1
ε2
1
ε1

)
v ′′
1 , x ̸= d v2(0) = v2(d) = v2(1) = 0 , x ∈ Ω1 ∪ Ω2.

Thus the regular component v is the solution of

Lv = f , x ∈ Ω1∪Ω2, v(0) = v0(0)+ε1ε2v1(0), v(d) = v0(d)+ε1ε2v1(d), v(1) = u(1).

Further we decompose w as w = w1 + w2 where w1 = (w11, w12)
T , w2 =

(w21, w22)
T . Thus w1 = w11+w21 and w2 = w12+w22, where w1 is the solution

of
Lw1 = 0 , x ∈ Ω, w1(0) = u(0)− v(0), w1(1) = 0 ,

and w2 is the solution of

Lw2 = 0 , x ∈ Ω1 ∪ Ω2, w2(0) = 0 , w2(1) = 0 , [w ′
2](d) = −[v ′](d).

Lemma 2.3. For each integer k, satisfying 0 ≤ k ≤ 3, the regular component v
and its derivatives satisfy the bounds given by

∥v(k)∥Ω1∪Ω2 ≤ C.

Proof. The proof follows from [7] and [2]. �
Lemma 2.4. For each integer k, satisfying 0 ≤ k ≤ 3, the singular component
w1 and its derivatives satisfy the bounds given by

|w11(x)| ≤ C exp

(
− αx

ε2

)
, |w12(x)| ≤ C exp

(
− αx

ε2

)
,

|w′
11(x)| ≤ C

(
ε−1
1 exp

(
−αx

ε1

)
+ε−1

2 exp

(
−αx

ε2

))
, |w′

12(x)| ≤ C

(
ε−1
2 exp

(
−αx

ε2

))
,

|w′′
11(x)| ≤ C

(
ε−2
1 exp

(
−αx

ε1

)
+ε−2

2 exp

(
−αx

ε2

))
, |w′′

12(x)| ≤ C

(
ε−2
2 exp

(
−αx

ε2

))
,

|w′′′
11(x)| ≤ C

(
ε−3
1 exp

(
− αx

ε1

)
+ ε−3

2 exp

(
− αx

ε2

))
,

|w′′′
12(x)| ≤ Cε−1

2

(
ε−2
1 exp

(
− αx

ε1

)
+ ε−2

2 exp

(
− αx

ε2

))
.

Proof. The proof follows from [7] and [2]. �
Lemma 2.5. For each integer k, satisfying 0 ≤ k ≤ 3, the singular component
w2 and its derivatives satisfy the bounds given by

|w21(x)| ≤

{
Cε2 exp(−αx

ε2
), x ∈ Ω1

Cε2 exp(−α(x−d)
ε2

), x ∈ Ω2,

|w22(x)| ≤

{
Cε2 exp(−αx

ε2
), x ∈ Ω1

Cε2 exp(−α(x−d)
ε2

), x ∈ Ω2,

|w′
21(x)| ≤

{
C(exp(−αx

ε1
) + exp(−αx

ε2
)), x ∈ Ω1

C(exp(−α(x−d)
ε1

) + exp(−α(x−d)
ε2

)), x ∈ Ω2,
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|w′
22(x)| ≤

{
C exp(−αx

ε2
), x ∈ Ω1

C exp(−α(x−d)
ε2

), x ∈ Ω2,

|w′′
21(x)| ≤

{
C(ε−1

1 exp(−αx
ε1
) + ε−1

2 exp(−αx
ε2
)), x ∈ Ω1

C(ε−1
1 exp(−α(x−d)

ε1
) + ε−1

2 exp(−α(x−d)
ε2

)), x ∈ Ω2,

|w′′
22(x)| ≤

{
C(ε−1

2 exp(−αx
ε2
)), x ∈ Ω1

C(ε−1
2 exp(−α(x−d)

ε2
)), x ∈ Ω2,

|w′′′
21(x)| ≤

{
C(ε−2

1 exp(−αx
ε1
) + ε−2

2 exp(−αx
ε2
)), x ∈ Ω1

C(ε−2
1 exp(−α(x−d)

ε1
) + ε−2

2 exp(−α(x−d)
ε2

)), x ∈ Ω2,

|w′′′
22(x)| ≤

{
Cε−1

2 (ε−1
1 exp(−αx

ε1
) + ε−1

2 exp(−αx
ε2
)), x ∈ Ω1

Cε−1
2 (ε−1

1 exp(−α(x−d)
ε1

) + ε−1
2 exp(−α(x−d)

ε2
)), x ∈ Ω2.

Proof. Consider the barrier function ϕ(1, 1)T ±w2, where

ϕ(x) :=

{
ε2A
α , x ∈ Ω1

ε2A
α exp(−α(x−d)

ε2
), x ∈ Ω2,

to bound w2. To bound derivatives of w2, use the technique used in [7] and
bound on w2 on the domain Ω1 and Ω2. �

3. Discretization of the Problem

We use piecewise uniform Shishkin mesh which uses these transition param-
eters:

σεl2 := min

{
d

2
,
ε2
α

lnN

}
, σεr2 := min

{
(1− d)

2
,
ε2
α

lnN

}
,

σεl1 := min

{
σεl2
2
,
ε1
α

lnN

}
, σεr1 := min

{
σεr2
2
,
ε1
α

lnN

}
.

The interior points of the mesh are denoted by
ΩN = {xi : 1 ≤ i ≤ N

2 − 1} ∪ {xi : N
2 + 1 ≤ i ≤ N − 1} = ΩN

1 ∪ ΩN
2 .

Let hi = xi − xi−1 be the ith mesh step and ~i = hi+hi+1

2 , clearly xN
2
= d and

Ω
N

= {xi : i = 0, 1, . . . , N}. Let N = 2l , l ≥ 5 be any positive integer.

We divide Ω
N

1 into three sub-intervals [0, σεl1 ], [σεl1 , σεl2 ] and [σεl2 , d] for some

0 < σεl1 ≤ σεl2 ≤ d
2 . The sub-intervals [0, σεl1 ] and [σεl1 , σεl2 ] are divided

into N/8 equidistant elements and the sub-interval [σεl2 , d] is divided into N/4

equidistant elements. Similarly, in Ω
N

2 the sub-intervals [d, d + σεr1 ] and [d +

σεr1 , d + σεr2 ] are divided into N/8 equidistant elements and the sub-interval
[d+σεr2 , 1] is divided into N/4 equidistant elements, for some 0 < σεr1 ≤ σεr2 ≤
1−d
2 .

Define the discrete finite difference operator LN as follows

LNU = f for all xi ∈ ΩN , (5)
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with boundary conditions

U (x0) = u0, U (xN ) = u1, (6)

where

LN = −Eδ2 −AD+ +B

and at xN/2 = d the scheme is given by

D+U (xN
2
) = D−U (xN

2
) (7)

where
δ2Z(xi) = (D+Z(xi) − D−Z(xi))

1
~i
, D+Z(xi) = Z(xi+1)−Z(xi)

hi+1
, D−Z(xi) =

Z(xi)−Z(xi−1)
hi

.

Lemma 3.1. Suppose that a mesh function Z(xi) satisfies Z(x0) ≥ 0,Z(xN ) ≥
0, LNZ(xi) ≥ 0 for all xi ∈ ΩN and D+Z(xN

2
)−D−Z(xN

2
) ≤ 0, then Z(xi) ≥ 0

for all xi ∈ Ω
N
.

Lemma 3.2. If Z(xi) is any mesh function, then,

∥Z∥
Ω

N ≤ max

{
∥Z(0)∥, ∥Z(1)∥, ∥LNZ∥ΩN

1 ∪ΩN
2

}
.

The discrete solution U can be decomposed into the sum U = V+ W . The
function V , is defined as the solution of the following problem:

LNV (xi) = f (xi), for all xi ∈ ΩN \ {d}, (8)

V (0) = v(0), V (d) = v(d), V (1) = v(1). (9)

The function W , is defined as the solution of the following problem:

LNW (xi) = 0 , for all xi ∈ ΩN \ {d}, (10)

W (0) = w(0), W (1) = w(1), [DW ](d) = −[DV ](d), (11)

where the jump in the discrete derivative of a mesh function Z at the point
xi = d is given by:

[DZ ](d) = D+Z (d)−D−Z (d).

Further decompose W as W = W 1 +W 2, where the function W 1 is defined
as the solution of the following problem:

LNW 1(xi) = 0 , for all xi ∈ ΩN ∪ {d}, (12)

W 1(0) = w(0), W 1(1) = 0 , (13)

and the function W 2 is defined as the solution of the following problem:

LNW 2(xi) = 0 , for all xi ∈ ΩN \ {d}, (14)

W 2(0) = 0 , W 2(1) = 0 , [DW 2](d) = −[DV ](d)− [DW 1](d). (15)



A Uniformly Convergent Numerical Method for a Weakly Coupled System 641

4. Convergence analysis

By Taylor’s expansion and bounds on regular components defined in lemma
2.3 gives

|(LN − L)v(xi)| ≤

(
ε1
3 (xi+1 − xi−1)∥v′′′1 ∥+ a1(xi)

2 (xi − xi−1)∥v′′1∥
ε2
3 (xi+1 − xi−1)∥v′′′2 ∥+ a2(xi)

2 (xi − xi−1)∥v′′2∥

)

≤ C

(
N−1

N−1

)
.

Define the mesh function Ψ±(xi) as

Ψ±(xi) :=


(
CN−1(d− xi)
CN−1(d− xi)

)
± (V − v)(xi) for xi ∈ ΩN

1(
CN−1(1− xi)
CN−1(1− xi)

)
± (V − v)(xi) for xi ∈ ΩN

2

 .

Using discrete maximum principle, the error of the regular component satisfies
the estimate

|(V − v)(xi)| ≤


(
CN−1(d− xi)
CN−1(d− xi)

)
for xi ∈ ΩN

1(
CN−1(1− xi)
CN−1(1− xi)

)
for xi ∈ ΩN

2

 . (16)

As in [7], the error of the singular component satisfies the estimate

|(W 1 −w1)(xi)| ≤ C

(
N−1 lnN
N−1 lnN

)
. (17)

Lemma 4.1. The following ε1, ε2− uniform bound

|[DW2](d)| ≤
(
C(1 + ε−1

1 N−1)
C(1 + ε−1

2 N−1)

)
,

where W2 is the solution of (14)− (15).

Proof. At the point x = d we know that

[DW 2](d) = −[DV ](d)− [DW 1](d).

First consider

D−V (d) = D−(V − v)(d) +D−v(d).

From lemma 2.3 we have

∥v ′∥Ω1 ≤
(
C
C

)
.

|D−v(d)| ≤
(
C
C

)
and |D−(V − v)(d)| ≤

(
CN−1

CN−1

)
.
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Therefore, |D−V (d)| ≤
(
C(1 +N−1)
C(1 +N−1)

)
.

Similarly, consider

D+V (d) = D+(V − v)(d) +D+v(d).

Again from lemma 2.3 we have

∥v ′∥Ω2 ≤
(
C
C

)
and

(
|ε1D+(V1 − v1)(d)|
|ε2D+(V2 − v2)(d)|

)
≤
(
CN−1

CN−1

)
.

Therefore, |D+V (d)| ≤
(
C(1 + ε−1

1 N−1)
C(1 + ε−1

2 N−1)

)
.

On Ω1, |W 1(xi)| ≤
(
CN−1

CN−1

)
implies that |D−W 1(d)| ≤

(
C
C

)
. On Ω2,

D+W 1(d) = D+(W 1 − w1)(d) +D+w1(d). From lemma 2.4 ∥w ′
1∥ ≤

(
C
C

)
and |D+(W 1 −w1)(xi)| ≤

(
C
C

)
.

Therefore,

|[DW 2](d)| ≤
(
C(1 + ε−1

1 N−1)
C(1 + ε−1

2 N−1)

)
.

�

Lemma 4.2. The following ε1, ε2− uniform bound

|W2(xi)| ≤
(
Cε1|[DW21](d)|
Cε2|[DW22](d)|

)
is valid, where W2 is the solution of (14)− (15).

Proof. Consider the following function ϕ±j , j = 1, 2 where

ϕ±j (xi) :=
Cεj |[DW2j ](d)|

α

{
1, xi ≤ d
ψj(xi), xi ≥ d

±W2j(xi)

where Ψ = (ψ1, ψ2)
T is the solution of

−εjδ2ψj(xi)− αD+ψj(xi) = 0, xi ∈ ΩN ∩ ΩN
2 ,

ψj(d) = 1, ψj(1) = 0 and D+ψj(xi) < 0, xi ≥ d.

Using the discrete maximum principle we get the required result. �

Lemma 4.3. The error of the singular component satisfies the estimate

|(W2 −w2)(xi)| ≤
(
CN−1 lnN
CN−1 lnN

)
.
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Proof.

[D(W 2 −w2)](d) = [DW 2](d)− [Dw2](d)

= [v ′](d)− [DV ](d) + [w ′
2](d)− [Dw2](d)− [DW 1](d).

Now
[v ′](d)− [DV ](d) = v ′(d+)−D+v(d)− v ′(d−) +D−v(d) + [D(v −V )](d).
From lemma 4.1 we have

|[D(V − v)](d)| ≤
(
Cε−1

1 N−1

Cε−1
2 N−1

)
and

|[v ′](d)− [Dv ](d)| ≤
(
CN−1

CN−1

)
.

Hence

|[v ′](d)− [DV ](d)| ≤
(
Cε−1

1 N−1

Cε−1
2 N−1

)
.

Likewise,

|[w ′
2](d)− [Dw2](d)| ≤ |D+w2(d)− w′

2(d+)|+ |D−w2(d)− w′
2(d−)|

≤

(
Chεr1 |w

(2)
21 (d+)|+ CH1|w(2)

21 (d−)|
Chεr1 |w

(2)
22 (d+)|+ CH1|w(2)

22 (d−)|

)
.

Using the bounds on derivatives of w2 given in lemma 2.5, we have

|[w ′
2](d)− [Dw2](d)| ≤

(
CN−1 lnN
CN−1 lnN

)
.

|[Dw1](d)| ≤

(
C(hεr1 +H1)|w(2)

11 (d−H1)|
C(hεr1 +H1)|w(2)

12 (d−H1)|

)
.

Using the bounds on derivatives of w1 given in lemma 2.4, we have

|[Dw1](d)| ≤
(
CN−1 lnN
CN−1 lnN

)
.

Also,

|[D(W 1 −w1)](d)| ≤

(
C N−1 lnN

ε1

C N−1 lnN
ε2

)
.

Collecting all the previous inequalities we get that

|[D(W 2 −w2)](d)| ≤

(
C N−1 lnN

ε1

C N−1 lnN
ε2

)
.
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By the Taylor’s expansion and bounds on the derivatives of w2, given in lemma
2.5 we have
Case (i) For xi ∈ [d+ σεr2 , 1].

|LN (W 2 −w2)(xi)| ≤
(
Cε1∥w′′

21∥(xi−1,xi+1) + C∥w′
21∥[xi,xi+1]

Cε2∥w′′
22∥(xi−1,xi+1) + C∥w′

22∥[xi,xi+1]

)
≤
(
CN−1

CN−1

)
.

Similar arguments prove a similar result for the sub-interval [σεl1 , d).

Case (ii) For xi ∈ (0, σεl1 ).

|(LN (W 2 − w2))1(xi)|

≤C

∫ xi+1

xi−1

ε−1
1 exp

(
−

αt

ε1

)
+ ε1ε

−2
2 exp

(
−

αt

ε2

)
dt

≤C

(
exp

(
−

αxi−1

ε1

)
− exp

(
−

αxi+1

ε1

)
+ ε1ε

−1
2

(
exp

(
−

αxi−1

ε2

)
− exp

(
−

αxi+1

ε2

)))
≤C

(
exp

(
−

αxi

ε1

)
sinh

(
αhεl1

ε1

)
+ ε1ε

−1
2 exp

(
−

αxi

ε2

)
sinh

(
αhεl1

ε2

))
≤CN−1 lnN, since sinh t ≤ Ct for 0 ≤ t ≤ 1.

|(LN (W 2 − w2))2(xi)|

≤C

∫ xi+1

xi−1

ε−1
1 exp

(
−

αt

ε1

)
+ ε−1

2 exp

(
−

αt

ε2

)
dt

≤C

(
exp

(
−

αxi−1

ε1

)
− exp

(
−

αxi+1

ε1

)
+ exp

(
−

αxi−1

ε2

)
− exp

(
−

αxi+1

ε2

))
≤C

(
exp

(
−

αxi

ε1

)
sinh

(
αhεl1

ε1

)
+ exp

(
−

αxi

ε2

)
sinh

(
αhεl1

ε2

))
≤CN−1 lnN.

Similar arguments prove a similar result for the sub-interval (d, d+ σεr1 ).
Case (iii) [σεl1 , σεl2 ).

|(LN (W 2 −w2))1(xi)| ≤ C

∫ xi+1

xi−1

ε−1
1 exp

(
− αt

ε1

)
+ ε1ε

−2
2 exp

(
− αt

ε2

)
dt.

Using the inequality

ε−1
1 exp

(
− αt

ε1

)
≤ ε−1

2 exp

(
− αt

ε2

)
for t >

2ε1
α
,

|(LN (W 2 −w2))1(xi)| ≤ Cε1ε
−1
2

(
exp

(
− αxi−1

ε2

)
− exp

(
− αxi+1

ε2

))
≤ Cε1ε

−1
2 exp

(
− αxi

ε2

)
sinh

(
αhεl2
ε2

)
≤ CN−1 lnN, since sinh t ≤ Ct for 0 ≤ t ≤ 1.
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Likewise, |(LN (W 2 −w2))2(xi)| ≤ CN−1 lnN.
Similar arguments prove a similar result for the sub-interval [d+ σεr1 , d+ σεr2 ).
Combining all these gives,

|LN (W2 −w2)(xi)| ≤
(
CN−1 lnN
CN−1 lnN

)
,

|[D(W 2 −w2)](d)| ≤

(
C N−1 lnN

ε1

C N−1 lnN
ε2

)
.

Consider the following function ϕ±j , j = 1, 2 where

ϕ±j (xi) := CN−1 lnN

{
1, xi ≤ d
ψj(xi), xi ≥ d

+ CN−1 lnN(1− xi)

where Ψ = (ψ1, ψ2)
T is the solution of

−εjδ2ψj(xi)− αD+ψj(xi) = 0, xi ∈ ΩN ∩ ΩN
2 ,

ψj(d) = 1, ψj(1) = 0 and D+ψj(xi) < 0, xi ≥ d.

Using the discrete maximum principle we get the required result. �
Theorem 4.4. Let u be the solution of given problem (1) − (2) and U is the
solution of discrete problem on the Shishkin mesh defined in section 3, then

∥U− u∥
Ω

N ≤ CN−1 lnN.

Proof. Using the equation (16), (17) and lemma 4.3 we get the required result.
�

5. Numerical Results

To illustrate the theoretical results the scheme in Section 3 is implemented
on these test examples.
Example 5.1 Consider the following singularly perturbed convection-diffusion
problem with discontinuous source term:

−ε1u′′1(x)− 0.8u′1(x) + 3u1(x)− u2(x) = f1(x), x ∈ Ω1 ∪ Ω2

−ε2u′′2(x)− u′2(x)− u1(x) + 3u2(x) = f2(x), x ∈ Ω1 ∪ Ω2

u1(0) = 0, u1(1) = 2, u2(0) = 0, u2(1) = 2.

where

f1(x) =

{
2 for 0 ≤ x < 0.5
−1 for 0.5 ≤ x ≤ 1

and f2(x) =

{
1.8 for 0 ≤ x < 0.5
−0.8 for 0.5 ≤ x ≤ 1.

For the construction of piecewise-uniform Shishkin mesh ΩN , we take α = 0.8.
The Exact solution of the examples are not known. Therefore we estimate the

error for U by comparing it to the numerical solution Ũ obtained on the mesh
x̃j that contains the mesh points of the original mesh and their midpoints, that
is, x̃2j = xj , j=0,. . . ,N, x̃2j+1 = (xj + xj+1)/2, j=0,. . . ,N-1.
For different values of N and ε1, ε2, we compute

DN
ε1,ε2 := ∥(U − Ũ )(xj)∥ΩN .
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Table 1. Maximum point-wise errors DN
ε1 , DN and

ε1, ε2−uniform rate of convergence pN for Example 5.1.

ε1 = 10−j N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

j = 0 9.51E-04 4.84E-04 2.44E-04 1.22E-04 6.16E-05 3.08E-05 1.54E-05

j = 1 3.03E-02 1.56E-02 7.95E-03 4.01E-03 2.01E-03 1.00E-03 5.04E-04
j = 2 4.08E-02 2.82E-02 1.76E-02 1.06E-02 6.17E-03 3.49E-03 1.94E-03
j = 3 4.99E-02 3.33E-02 2.11E-02 1.25E-02 7.16E-03 3.99E-03 2.20E-03
j = 4 5.12E-02 3.35E-02 2.12E-02 1.25E-02 7.20E-03 4.08E-03 2.29E-03

j = 5 5.14E-02 3.35E-02 2.12E-02 1.25E-02 7.34E-03 4.21E-03 2.36E-03
j = 6 5.15E-02 3.35E-02 2.12E-02 1.26E-02 7.44E-03 4.27E-03 2.39E-03
j = 7 5.15E-02 3.35E-02 2.12E-02 1.26E-02 7.45E-03 4.28E-03 2.40E-03
j = 8 5.15E-02 3.35E-02 2.12E-02 1.26E-02 7.46E-03 4.28E-03 2.40E-03

DN 5.15E-02 3.35E-02 2.12E-02 1.26E-02 7.46E-03 4.28E-03 2.40E-03

pN 8.38E-01 8.52E-01 9.22E-01 9.17E-01 9.44E-01 9.68E-01

If ε1 = 10−j for some non-negative integer j , set

DN
ε1 := max{DN

ε1,1, D
N
ε1,10−1 , DN

ε1,10−2 , . . . , DN
ε1,10−j}.

Then the parameter-uniform error is computed as DN := max{DN
1 , DN

10−1 , . . . , D
N
10−8},

and the order of convergence is calculated using the formula pN :=
lnDN − lnD2N

ln(2 lnN) − ln(ln(2N))
.

Finally, we want to show that similar results can be obtained for coupled system
ofM(> 2) singularly perturbed convection diffusion problem with discontinuous
source term. Letting N = 2M ×τ , where τ is some positive power of 2, the mesh
is defined using the following transition points

σεlM := min

{
d

2
,
εM
α

lnN

}
, σεrM := min

{
(1− d)

2
,
εM
α

lnN

}
,

σεlk := min

{
σεlk+1

2
,
εk
α

lnN

}
,

σεrk := min

{
σεrk+1

2
,
εk
α

lnN

}
, k =M − 1, . . . , 1.

Then we divide the interval [0, d] into M+1 subintervals [0, σεl1 ], [σεl1 , σεl2 ], . . . ,

[σεlM−1
, σεlM ], [σεlM , d]. On the subinterval [0, σεl1 ] a uniform mesh of N/2M+1

mesh intervals, on [σεlk , σεlk+1
], 1 ≤ k ≤ M − 1, a uniform mesh of N/2M−k+2

mesh intervals, and on [σεlM , d] a uniform mesh of N/4 mesh intervals are placed.

Similarly, we divide the interval [d, 1] into subintervals [d, d+σεr1 ], [d+σεr1 , d+
σεr2 ], . . . , [d+σεrM−1

, d+σεrM ], [d+σεrM , 1]. On the subinterval [d, d+σεr1 ] a uni-

form mesh of N/2M+1 mesh intervals, on [d+ σεrk , d+ σεrk+1
], 1 ≤ k ≤ M − 1,

a uniform mesh of N/2M−k+2 mesh intervals, and on [d + σεrM , 1] a uniform

mesh of N/4 mesh intervals are placed. Let hεl1 and hεr1 be the mesh lengths

on [0, σεl1 ] and on [d, d+ σεr1 ] respectively. Let H1 and H2 be the mesh lengths

on [σεlM , d] and on [d+ σεrM , 1] respectively; hεlk and hεrk be the mesh lengths

on [σεlk , σεlk+1
] and on [d+ σεrk , d+ σεrk+1

], k = 2, . . . ,M respectively.
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In this case also, we obtain the scheme similar to (3.1), with u = (u1, u2, . . . , uM )T ∈
C0(Ω)M ∩ C1(Ω)M ∩ C2(Ω1 ∪Ω2)M and also expect the error bound ∥U − u∥

Ω
N ≤

C(N−1 lnN) to hold, although attempts of the authors have failed so far to
provide a proof. To illustrate the order of uniform convergence of this method
we consider the following test example.

Example 5.2 Consider the following singularly perturbed convection-diffusion
problem with discontinuous source term:

−ε1u′′1(x)− (2x+ 1)u′1(x) + 3xu1 − xu2(x)− xu3(x) = f1(x), x ∈ Ω1 ∪ Ω2

−ε2u′′2(x)− 3u′2(x)− u1(x) + 4u2(x)− u3(x) = f2(x), x ∈ Ω1 ∪ Ω2

−ε3u′′3(x)− (2− x)u′3(x)− x2u1(x) + (1 + x)u3(x) = f3(x), x ∈ Ω1 ∪ Ω2

u(0) = 0, u(1) = 0,

where f1(x) =

{
exp(x) for 0 ≤ x ≤ 0.5
1 for 0.5 < x ≤ 1,

f2(x) =

{
cos(x) for 0 ≤ x ≤ 0.5
4 for 0.5 < x ≤ 1

and

f3(x) =

{
sinh(x) for 0 ≤ x ≤ 0.5
2 for 0.5 < x ≤ 1.

Table 2. Maximum point-wise errors DN
ε1,ε2,ε3 , D

N with ε2 =

10−4, ε3 = 10−1 and ε1, ε2, ε3−uniform rate of convergence
pN for Example 5.2.

ε1 = 10−j N=64 N=128 N=256 N=512 N=1024 N=2048
4 3.95E-02 2.67E-02 1.86E-02 1.17E-02 6.97E-03 3.99E-03
5 4.29E-02 2.93E-02 1.81E-02 1.08E-02 6.27E-03 3.53E-03
6 4.52E-02 3.89E-02 2.83E-02 1.92E-02 1.21E-02 7.21E-03
7 4.76E-02 4.11E-02 2.92E-02 2.02E-02 1.26E-02 7.52E-03
8 4.79E-02 4.14E-02 2.93E-02 2.03E-02 1.26E-02 7.55E-03
9 4.79E-02 4.14E-02 2.93E-02 2.03E-02 1.26E-02 7.55E-03
10 4.79E-02 4.14E-02 2.93E-02 2.03E-02 1.26E-02 7.58E-03
DN 4.79E-02 4.14E-02 2.93E-02 2.03E-02 1.26E-02 7.58E-03
pN 2.70E-01 6.18E-01 6.38E-01 8.11E-01 8.50E-01
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