References
- Andrade, C., Castellote, M., Alonso, C., and Gonzalez, C. (2000), 'Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion test-Part I: Comparison between several methods of calculation', Mater. Struct., 33, 21-28 https://doi.org/10.1007/BF02481692
- Atkinson, A. and Nickerson, A.K. (1984), 'The diffusion of ions through water-saturated cement', J. Mater. Sci., 19, 3068-3078 https://doi.org/10.1007/BF01026986
- Baroghel-Bouny, V. (1994), 'Caracterisation des pates de ciment et des betons-Methodes, analyse, interpretation', Laboratoire Central des Ponts et Chaussees
- Baroghel-Bouny, V., and al. (2004a), 'Which toolkit for durability evaluation as regards chloride ingress into concrete? Part I: Comparison between various methods for assessing the chloride diffusion coefficient of concrete in saturated conditions', Proc. of the 3rd Int. RILEM Workshop 'Testing and modelling chloride ingress into concrete', Sept., Madrid, Spain (Ed. By C. Andrade & J. Kropp, RILEM Publ., Bagneux, 2004), PRO 38, 105-136
- Baroghel-Bouny, V. (2004b), 'Which toolkit for durability evaluation as regards chloride ingress into concrete? : Part II. Development of a performance approach based on durability indicators and monitoring parameters', Proc. of the 3rd Int. RlLEM Workshop 'Testing and modelling chloride ingress into concrete', Sept., 2002, Madrid, Spain (Ed. By C. Andrade & J. Kropp, RILEM Publ., 2004), 137-163
- Baroghel-Bouny, and al. (2004c), 'Ageing of concretes in natural environments: an experiment for 21st century. IV-Results on cores extracted from field-exposed test specimens of various sites at first times of measurement', Bul. Lab. Ponts & Chaus. 249, 49-100
- Beaudoin, J.J., Ramachandran, V.S., and Feldman, R.F. (1990), 'Interaction of chloride and C-S-H', Cement Concrete Res., 20, 875-883 https://doi.org/10.1016/0008-8846(90)90049-4
- Bigas, J.P. (1996), 'La diffusion des ions chlore dans les mortiers', Ph.D thesis, Genie civil, Toulouse (in French)
- Bimin- Yauri, U.A. and Glasser, F.P. (1998), 'Friedel's salt: Its solid solution and their role in chloride binding', Cement Concrete Res., 28, 1713-1723 https://doi.org/10.1016/S0008-8846(98)00162-8
- Brouwers, H.J.H. and van Eijk, R.J. (2003), 'Alkali concentration of pore solution in hydrating OPC', Cement Concrete Res., 33, 191-196 https://doi.org/10.1016/S0008-8846(02)01022-0
- Castellote, M., Andrade, C., and Alonso, C. (1999), 'Chloride binding isotherms in concrete submitted to nonsteady-state migration experiments', Cement Concrete Res., 29, 1799-1806 https://doi.org/10.1016/S0008-8846(99)00173-8
-
Chaussadent, T., Baroghel-Bouny, V., Care, S., Perrin, B., Bonnet, S., Francois, R., Francy, O. (2000), Transferts dans les betons et durabilite des ouvrages. Analyse des interactions physico-chimiques entre les chlorures et Ie beton, Theme de Recherche OA9-Sujet
$n^{\circ}$ 3-Programme 3.1, Rapport de synthese LCPC/LETHEM/LMDC, 41 p - Eymard, R., Gallouet, T., Herbin, R., in: P. Ciarlet, J.L. Lions (Eds.) (2004), Handbook of Numerical Analysis: The Finite Volume Method, in press
- Francy, O. (1998), 'Modelisation de la penetration des ions chlorures dans les mortiers partiellement sature en eau', PhD thesis, Genie civil, Paul Sabatier, Toulouse (in French)
- Frederiksen, J.M. (1996), 'Chloride penetration into concrete state-of-the-art', Report No. 53, The Danish Road Directorate, 118-123
- Goto, S. and Roy, D.M. (1981), 'Diffusion of ions through hardened cement pastes', Cement Concrete Res., 11, 751-757 https://doi.org/10.1016/0008-8846(81)90033-8
- Hausmann, D.A. (1967), 'Steel corrosion in concrete: How does it's occur', Materials Protection, 4, 19-25
- Helfferich, F. (1962), Ion Exchange, McGraw-Hill, New York
- Hong, S.Y. and Glasser, F.P. (1999), 'Alkali binding in cement paste: Part I. The C-S-H phase', Cement Concrete Res., 29, 1893-1903 https://doi.org/10.1016/S0008-8846(99)00187-8
- Larbi, J.A, Fraay, A.L.A, and Bijen, J.M. (1990), 'The chemistry of the pore fluid of silica fume-blended cement systems' Cement Concrete Res., 20, 506-516 https://doi.org/10.1016/0008-8846(90)90095-F
- Larsen, C.K. (1998), 'Chloride binding in concrete, effect of surrounding environment and concrete composition', PhD thesis, Norwegian University
- Li, L.Y. and Page, C.L. (1998), 'Modelling of electrochemical chloride extraction from concrete: Influence of ionic activity coefficient', Comput Mat. Sci. 9, 303-308 https://doi.org/10.1016/S0927-0256(97)00152-3
- Masi, M., Colella, D., Radaelli, C., and Bertolini, C. (1997), 'Simulation of chloride penetration in cement-based materials', Cement Concrete Res. 27, 1591-1601 https://doi.org/10.1016/S0008-8846(97)00200-7
- Marchand, J., Samson, E., Maltais, Y., Lee, R.J., and Sahu, S. (2002), 'Predicting the performance of concrete structures exposed to chemically aggressive environment-Field validation', Mater. Struct., 35, 623-631
- McGrath, P.F. and Hooton, R.D. (1996), 'Influence of voltage on chloride diffusion coefficient form the migration tests', Cement Concrete Res., 23, 1329-1244
-
Mounanga, P., Khelidj, A., Loukili, A., and Baroghel-Bouny, V. (2004), 'Prediction
$Ca(OH)_2$ content and chemical shrinkage of hydrating cement pastes using analytical approach', Cement Concrete Res. 34,255-265 https://doi.org/10.1016/j.cemconres.2003.07.006 - Nagataki, S., Otsuki, N., Wee, T.H., and Nakashita, K. (1993), 'Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars', ACI Mater. J., 90(3), 323-332
- Nelder, J.A. and Mead, R. (1965), Com put J., 7, 308-313 https://doi.org/10.1093/comjnl/7.4.308
- Nilsson, L.O. (2005), 'WP4 report-modelling of chloride ingress', Report, 112p
- Nguyen, T.Q., Baroghel-Bouny, V., Dangla, P., and Belin, P. (2006), 'Multi-level modelling of chloride ingress into saturated concrete', Proc. of Int. RILEM Workshop 'Performance based evaluation and indicator for concrete durability', Madrid, Spain, Mar
- Papadakis, V.G. (2000), 'Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress', Cement Concrete Res. 30, 291-299 https://doi.org/10.1016/S0008-8846(99)00249-5
- Pollitt, H.W.W. and Brown, A.W. (1969), 5th ISCC, vol. 1, p. 322
- Samson, E. and Marchand, J. (1999a), 'Numerical solution of the extended Nemst-Planck model', J. Colloid Interf. Sci. 215, 1-8 https://doi.org/10.1006/jcis.1999.6145
- Samson, E., Lemaire, G., Marchand, J., and Beaudoin, J.J. (1999b), 'Modelling chemical activity effects in strong ionic solution', Comput. Mater. Sci. 15, 285-294 https://doi.org/10.1016/S0927-0256(99)00017-8
- Samson, E. and Marchand, J. (2003), 'Calculation of ionic diffusion coefficients on the basis of migration test results', Mater. Struct., 36, 156-165 https://doi.org/10.1007/BF02479554
- Suryavanshi, A.K., Scantlebury, J.D., and Lyon, S.B. (1996), 'Mechanism of Frieldel's salt formation in cements rich in tri-calcium aluminate', Cement Concrete Res. 26, 717-727 https://doi.org/10.1016/S0008-8846(96)85009-5
- Tang, L. (1996a), 'Chloride transport in concrete-measurement and prediction', PhD thesis, Building Materials, Chalmers, Gothenburg
- Tang, L. (1996b), 'Electrically accelerated methods for determining chloride diffusivity in concrete-Current development', Mag. Concrete Res., 48, 173-179 https://doi.org/10.1680/macr.1996.48.176.173
- Tang, L. and Nilsson, L.O. (1993), 'Chloride binding capacity and binding isotherms of OPC pastes and mortar', Cement Concrete Res. 23, 247-253 https://doi.org/10.1016/0008-8846(93)90089-R
- Tang, L. and Nilsson, L.O. (1992), 'Rapid determination of the chloride diffusivity in concrete by applying an electrical field', ACI Mater. J. Technical paper, 49-53
- Taylor, H.F.W. (1987), 'A method for predicting alkali ion concentration in cement pore solution', Adv. Cement Res., 1, 5-16 https://doi.org/10.1680/adcr.1987.1.1.5
- Truc, O., Ollivier, J.P., and Nilsson, L.O. (2000a), 'Multi-species transport in saturated cement-based materials', Proc. of the 2nd RILEM Workshop 'Testing and modelling chloride ingress concrete', Sep., Paris, France 1995 (Ed. By C. Andrade & J. Kropp, RlLEM Publ., 2000), 247-259
- True, O. and Ollivier, J.P. (2000b), Carcasses, M., 'A new way for determining the chloride diffusion coefficient in concrete from steady-state migration tests', Cement Concrete Res., 30, 217-226 https://doi.org/10.1016/S0008-8846(99)00232-X
Cited by
- Anion capture and exchange by functional coatings: New routes to mitigate steel corrosion in concrete infrastructure vol.101, 2017, https://doi.org/10.1016/j.cemconres.2017.08.021
- Model-based durability design of concrete structures in Hong Kong–Zhuhai–Macau sea link project vol.53, 2015, https://doi.org/10.1016/j.strusafe.2014.11.002
- Comparison of existing chloride ingress models within concretes exposed to seawater vol.49, pp.11, 2016, https://doi.org/10.1617/s11527-016-0803-y
- Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis vol.42, pp.9, 2012, https://doi.org/10.1016/j.cemconres.2012.05.008
- Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models vol.31, pp.8, 2009, https://doi.org/10.1016/j.cemconcomp.2009.01.009
- Coupled diffusion of chloride and other ions in saturated concrete vol.5, pp.3, 2011, https://doi.org/10.1007/s11709-011-0112-z
- Temperature effect on multi-ionic species diffusion in saturated concrete vol.13, pp.2, 2014, https://doi.org/10.12989/cac.2014.13.2.149
- Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials vol.33, pp.8, 2011, https://doi.org/10.1016/j.cemconcomp.2011.04.007
- Framework for reactive mass transport: Phase change modeling of concrete by a coupled mass transport and chemical equilibrium model vol.92, 2014, https://doi.org/10.1016/j.commatsci.2014.05.021
- Requirements and possible simplifications for multi-ionic transport models – Case of concrete subjected to wetting-drying cycles in marine environment vol.164, 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.015
- Modelling of isothermal coupled moisture–ion transport in cementitious materials vol.41, pp.8, 2011, https://doi.org/10.1016/j.cemconres.2011.04.001
- Sensitivity analysis of chloride ingress models: Case of concretes immersed in seawater vol.136, 2017, https://doi.org/10.1016/j.conbuildmat.2017.01.019
- Coupled diffusion of multi-component chemicals in non-saturated concrete vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.201
- Performance-based assessment of durability and prediction of RC structure service life: transport properties as input data for physical models vol.47, pp.10, 2014, https://doi.org/10.1617/s11527-013-0144-z
- Parallel Finite Element Model for Multispecies Transport in Nonsaturated Concrete Structures vol.12, pp.17, 2006, https://doi.org/10.3390/ma12172764
- Rapid determination method of the seismic failure modes of coastal bridge columns in the whole life cycle vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.08.081
- Modeling of the Adsorption Behavior of Cs and Sr on Calcium Silicate Hydrates vol.19, pp.10, 2006, https://doi.org/10.3151/jact.19.1061
- General Overview of the Research Project Investigating the Radionuclide Solution Behavior in Mock Mortar Matrix Modeled after Conditions at the Fukushima-Daiichi Nuclear Power Station vol.19, pp.9, 2006, https://doi.org/10.3151/jact.19.950