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ABSTRACT. This paper is comparing numerical schemes for a differential equation with con-
vection and fourth-order diffusion. Our model equation is h; + (h? — k%), = —(h*hews)s,
which arises in the context of thin film flow driven the competing effects of an induced surface
tension gradient and gravity. These films arise in thin coating flows and are of great technical
and scientific interest. Here we focus on the several numerical methods to apply the model
equation and the comparison and analysis of the numerical results. The convection terms are
treated with well known WENO methods and the diffusion term is treated implicitly. The dif-
fusion and convection schemes are combined using a fractional step-splitting method.

1. INTRODUCTION

In this paper, we consider numerical solutions for the thin film partial differential equations
of the form

he + (h* = B?)y = —(R’hyuz)z, T ER, >0,

h(z,0) = ho(z),
with proper boundary conditions. Equation (1.1) describes the flow of a thin liquid film, where
h(z,t) > 0 denotes the film thickness. The flux terms represent surface shear and gravity,

where the forces act in opposing directions and the diffusion term on the right hand side rep-
resents surface tension. The surface shear term may arise due to temperature or concentration
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gradients or to an external shear force (caused by wind for example). A phenomenon of in-
terest in liquid thin film flows under certain conditions is driven by competing effects of the
gravity and a thermally induced surface tension gradient. Understanding the thin liquid film
is important in many physical systems such as coating processes, de-icing of airplane wings
and construction of photographic films. Recently, it has been discovered that the interfacial dy-
namics of these liquid thin films include the development of undercompressive shocks. Several
finite difference schemes have been developed for the simulation of the liquid thin film flows
and are available in the literature. The main difference among them is the way they address the
problem of shock waves formation.

The model equation is constructed by the fourth order regularization and the nonconvex flux
function. Numerical schemes for the solution of nonconvex flux have been successful due to
developing high order ENO and Weight ENO schemes. However, it is not proper to treat the
fourth order diffusion term with those schemes directly using explicit methods because of too
much computing cost. To treat the diffusion terms we have to concern implicit methods.

ENO schemes are using an adaptive stencil from a set of candidate stencils to avoid spuri-
ous oscillations near discontinuities. Osher and Shu constructed high order methods based on
essentially non-oscillatory (ENO) schemes [7, 6, 15, 17] for solving hyperbolic partial differ-
ential equations with several monotone fluxes. In 1994, Liu, Osher, and Chan [11] introduced
an weighted ENO (WENO) scheme, which is an improved version of the cell-averaged ENO
schemes. WENO uses a nonlinear convex combination of all the candidate stencils by weight-
ing the contribution of the local flux according to its smoothness on each stencil. Jiang and
Shu [9] introduced a finite difference (flux) version of WENO schemes (for hyperbolic con-
servation laws, denoted by WENO-JS) along with new smoothness indicators which are the
sum of the normalized squares of the scaled L? norms of the all derivatives of the lower order
polynomials.

In [8], Henrick, Aslam, and Powers noticed an important limitation of the fifth-order WENO-
JS scheme that it may provide only the third-order accuracy at certain smooth extrema or near
critical points. To fix this problem, they constructed the so-called Mapped WENO scheme(WENO-
M) by using a simple nonlinear mapping to the WENO-JS. Compared to the WENO-JS scheme,
the WENO-M scheme can achieve the optimal convergence order at critical points of smooth
parts, reduce the numerical dissipation, and obtain sharper results near discontinuities. In [2],
Borges, Carmona, Costa, and Don introduced another version of the fifth-order WENO scheme
(called WENO-Z) with a new higher order smoothness indicator which is obtained through a
linear combination of the smoothness indicator of WENO-JS. The WENO-Z scheme has the
same accuracy as the WENO-M scheme but generates improved results.

The goal of this paper is comparing the several numerical solution of the thin film equations.
We compare approximate solutions obtained by numerical solutions and discuss effectiveness
and accuracy of the numerical schemes.
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2. NUMERICAL SCHEMES

In numerical computations, there are several ways to handle convection-diffusion equations
which are fractional step splitting methods and unsplit methods. We here consider to solve the
equation (1.1) using a fractional step splitting method, in which one alternates between solving
the convection equation

hi + f(h), = 0 where f(h) = h% — h3, (2.1)

and the diffusion equation
he = — (W hawa) s, (2.2)

in each time step. For the diffusion equation we are using Crank-Nicolson methods (see [3]).
We now consider a numerical scheme for the convection part,

hi + f(R)s = 0. 2.3)

The notation employed in the numerical calculations is as follows. Let {I;} be a partition
of a given domain with the jth cell I := [z;_; /2, Tj41 /2]. The center of I; is denoted by
;= %(%‘—1/2 + xj+1/2) and the value of a function & at the location x; is denoted by using
the subscript j, i.e., hj = h(:cj). In what follows, for practical use, we assume that the set
{a:jH /Q}j is uniformly gridded. Then, the notation Az = x; /5 — z;_1 /7 indicates the size
of I je
The one-dimensional hyperbolic conservation laws in (2.3) can be approximated by a system

of ordinary differential equations, where the spatial derivative has been replaced by a finite
difference, so that it yields the semi-discrete form:

dh; 1,4 p

W = —Ix(fj+1/2 - fj—1/2)> 24

where h;(t) is the numerical approximatiAon to the point value h(x;,t) in a grid and fjﬂ /2
is a numerical flux. The numerical flux f has to satisfy a Lipschitz continuity in each of its

arguments and is consistent with the physical flux f, that s, f(h,..., k) = f(h). To compute

the numerical flux fj:l:l /2, we define a function g implicitly through the following equation
(see Lemma 2.1 of [17]),

N 1 z+Ax/2 p )5
s =g [ et @3)
Differentiating (2.5) with respect to = leads to
1 A A
fh@)s = 1= (96 +55) - gla = 50), 2.6)

which indicates that the numerical flux fjﬂ /2 should approximate 9( 11 /2) to a high order,
that is, fj1/2 = g(2j11/2) + O(Az®).
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2.1. WENO. We first briefly introduce the construction of the WENO scheme [9, 18]. In
order to construct fj+1 /2. the classical WENO scheme with the fifth-order accuracy uses a
5-point stencil which is subdivided into three candidate substencils. A numerical flux is cal-
culated for each stencil and the local solutions are then averaged in a way of retaining the
fifth-order convergence in smooth regions. However, in order to better approximate derivatives
near shocks, the weights should effectively remove the contribution of stencils which contain
the discontinuity.

To avoid entropy violating solutions and obtain the numerical stability we split the flux f(h)
into two components f and f~ such that

F(h) = fT(h) + f~(h), 2.7)
where ‘g—}j > 0and aaf—u_ < 0. One of the simplest flux splitting is the Lax-Friedrichs splitting
which is given by

1

FE(h) = 5(f(h) £ ah), (2.8)
where o = maxy, | f/(h)| over the pertinent range of h which can be decided a-priori using the
explicit formula for the exact solution.

The interface approximation of the fifth order WENO with Lax-Friedrichs splitting is given
by

P10 = (= Fit & TH5 % Thiia = fyva) = ON(AST g AFF L ATE L AFE )
+ q)N(Afj+g7Afj+%aA j+%’Afj—%)’
(2.9)
where f; = f(hD), fi7 = fE(h), Afi% = f&, — ffand
1 1 1
dn(a,b,c,d) = gwo(a —2b+c)+ g(wg - 5)(17 —2c+d). (2.10)
2.2. WENO-JS. The smoothness indicator 3; developed by Jiang and Shu [9] is given by
2
Tjt1/2 dt N2
_ 20-1( 4 2k
5k_2/x. Az (dmef ) dz. 2.11)
/=1 j—1/2
The weights w; and d; are defined by

Q dl

wj = o= —A 2.12)
’ Sro e+ )
1 3 3
dOZTOadlzgad2:Ev (213)

where 0 < ¢ is taken to prevent singularity.
We remark that the indicator in (2.11) is similar to, but smoother than, the total variation
measurement based on the L! norm. For more details, the readers are referred to [18].
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2.3. Mapped WENO. Henrick, Aslam, and Powers [8] noticed that the convergence order
may not hold at certain smooth extrema or near critical points in WENO-JS. To fix this problem,
they introduced a mapping function gy (w) defined as

w(dg + di — 3dpw + w?)
gk(w) = a2 T )
L w(l — 2dk)

k=0,1,2, (2.14)

where dj, are the ideal weights given in (2.12) and w € [0, 1]. This function is a non-decreasing
monotone function in [0, 1] with the following properties:

1.0 < gr(w) <1, gx(0) = 0and gi(1) = 1.

2. gp(w) = 0if w ~ 0; gp(w) = 1if w ~ 1.

3. gr(dk) = di, gi.(di) = gi(di) = 0.

4. gr(w) = dp + O(A2Y), if w = dy, + O(Ax?).

The mapped weights are given by:

WM =Tk oM gwr), k=012, (2.15)
where wy, are computed via (2.12).

2.4. WENO-Z. The idea of the fifth order WENO-Z scheme introduced in [2] is the mod-
ification of the smoothness indicator 3 of WENO-JS to obtain a higher order smoothness
indicator. This new smoothness indicator of the fifth order WENO-Z is obtained by the linear
combination of the [, to satisty the sufficient condition for fifth order convergence.

The nonlinear weights w; of WENO-Z are defined by

o d
— k and «of = i
2 z

> =0 ay B

where d, are the ideal weights given in (2.13) and the new smoothness indicator 37 are defined

by
- 160 = o]\’
5k_<1+(5k+5)>.

If we have a numerical approximation to each of the spatial terms we can rewrite this equa-
tion for the fixed time ¢ as an ordinary differential equation (ODE)

dh(t)

dt
where L(h™) is a discretization of the spatial operator. To retain high-order accuracy in time
without creating spurious oscillations, it is customary to use so-called TVD Runge-Kutta meth-

ods [15, 17] as the ODE solver. These methods employ a convex combination of forward Eu-
ler steps to advance the solution in time. They are especially designed to maintain the TVD

Wi = (2.16)
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property, i.e., ensure that the solution is total variation diminishing, the third-order method
(RK-TVD3) reads:

Y = p™ 4 AtL(R™)

h?) = Zh” - ih(l) + iAtﬁ(h(l))
1 2 2

ntl _ Zpny 2p(2) 4 2 2)

h Sh" + Sh® + S AL,

where h' represents the solution at the time step n.

3. NUMERICAL RESULTS

In this section we present the numerical results using WENO-JS, WENO-M and WENO-Z
methods.

Example 3.1. Let us consider the equation of the non-convex flux
4+ (¢* —q°)s =0,

2/3, if0<ax<1, (3.1
q(x,O) = / L
0, otherwise.

Since the flux function is non-convex, the exact solution has slightly more structures than that
of a convex flux function. The solution can be computed by using rarefaction waves and the
equal area rule. The solution is integrated up to t = 20 with Az = 0.01 in the calculations.
The CFL number is set to 0.5. The results are shown in Figs. 1. The WENO-Z methods are
overestimated but Mapped WENO performs better than the classical WENO schemes.

Now we consider the original problem (Egs. (1.1)) and compare the results of WENO-JS,
WENO-M and WENO-Z methods. To solve the equation numerically, we employ a fractional
step splitting method that alternates between solving the diffusion equation (2.2) and the con-
vection equation (2.1). In the following examples, when we employ an explicit scheme to the
convection term, we calculate the diffusion term using the Crank-Nicolson scheme. To clearly
distinguish between the different schemes and to avoid differences caused by the behavior due
to the initial condition, it is best to compare results at large times. And this needs to large com-
putational domains and consequently large computation times. In most examples we therefore
modify equation (1.1) to move with the region of interest

he + (% — h3)y — shy = —(RPheee)s (3.2)

where the wave speed s is the shock speed given by the Rankine-Hugoniot condition using the
two boundary values

f(hr) — f(hr)
—h .

— (3.3)

S =
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FIGURE 1. Comparison of the analytical solution with the numerical solution
of non-convex flux function (3.1) with WENO-JS, WENO-M and WENO-Z
att = 20.

We now consider the results of the numerical schemes of adding the term —sh, to the
traveling wave. For consistency and to prevent the numerical treatment of the —sh, term from
affecting the results, we apply the central method to this term for all schemes. This indicates a
good reason to use the explicit schemes, which show consistent results regardless of the initial
data. In the numerical results of the thin film equation, the change of initial conditions can
observe the various behavior of propagating waves.

Now, we consider the multiple Lax shock profiles and compare the results of several initial
conditions. First we consider the following condition:

Example 3.2.
hoo — b

h(z) = (tanh(—z + 300) + 1) +b (3.4)

where ho, = 0.3323 and b = 0.1. The results are shown in fig. 2.

The second stable wave involves an initial condition with a bump of width 10,
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FIGURE 2. Comparison of the analytical solution with the numerical solution
of non-convex flux function (3.1) with WENO-JS, WENO-M and WENO-Z

att = 104,
Example 3.3.
hx) = ((0.6 — hoo)/2) tanh(z — 300) + (0.6 + hoo)/2, if 2 < 305, 3.5)
~ | —((0.6 — b)/2) tanh(z — 310) + (0.6 + b)/2,  otherwise. '

In Fig. 3 we present results for the initial profile of Eq. (3.5) at ¢ = 10*. In this case we
solve the governing equation with a moving axis, given by Eq. (3.2). The CFL numbers for the
schemes are 0.5. The results of Mapped WENO and WENO-Z methods are hard to distinguish.
All curves show that the initial hump changes to an undercompressive wave on the right and

a compressive wave on the left. The bump width remains relatively constant for each scheme.
This wave therefore appears stable.

The last stable wave involves an initial condition with a bump of width 20 switched the
initial condition,
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FIGURE 3. Comparison of with WENO-JS, Mapped WENOS5 and WENO-Z
att =10

Example 3.4.

h() = {((0.6 — heo)/2) tanh(z — 300) + (0.6 + hoo)/2, if z < 310,

—((0.6 — b)/2) tanh(x — 320) + (0.6 + b)/2, otherwise. (3-6)

The results are shown in Fig. 4 at t = 10°. We set the CFL numbers equal 0.5. Ha et. al. [3]
point out that the WENO-JS methods are relatively stable than the other explicit methods. We
can see that the other WENO schemes - WENO-Z and WENO-M - are stable.

4. CONCLUSION

We have presented the results of a fourth-order thin film equations using several numerical
schemes. We apply fractional step-splitting method using an explicit scheme for the convection
term and an implicit one for the fourth-order diffusion term. When the fourth-order diffusion
term is included, it is clear that implicit methods should be applied to speed up calculations.
For each method, our choice led to the best results in the example of Section 3. WENO-M
provided consistent and accurate results. When the convective term —sh, was included, the
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FIGURE 4. Comparison of WENO-JS, WENO-M and WENO-Z at t = 10°.

problem with the implicit schemes was removed. This was a result of applying the central
method to this term which gave the scheme a similar form to our other explicit schemes.

To summarize, from our calculations, it appears that for the best accuracy and efficiency
fourth-order diffusion equations with a convective term should be tackled using an explicit
method on the convection term coupled to an implicit diffusion term by fractional step-splitting.
The choice of explicit methods may be guided by a traveling wave solution. Our examples
indicate that, for this type of problem, WENO-M is the most robust of the three methods
investigated.
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