• 제목/요약/키워드: Nucleation and growth

검색결과 523건 처리시간 0.027초

고내식성의 신 마그네슘 코팅막 제작 (Preparation of New Corrosive Resistive Magnesium Coating Films)

  • 이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

Synthesis of Titanate Nanotubes Via A Hydrothermal Method and Their Photocatalytic Activities

  • Kim, Ye Eun;Byun, Mi Yeon;Lee, Kwan-Young;Lee, Man Sig
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.147-154
    • /
    • 2022
  • Titanate nanotubes (TNTs) were synthesized via alkaline hydrothermal treatment using commercial TiO2 nanoparticles (P25). The TNTs were prepared at various TiO2/NaOH ratios, hydrothermal temperatures, and hydrothermal times. The synthesized catalysts were characterized by X-ray diffraction, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, field-emission transmission electron microscopy, and ultraviolet-visible spectroscopy. TNTs were generated upon a decrease in the TiO2/NaOH ratio due to the dissolution of TiO2 in the alkaline solution and the generation of new Ti-O-Ti bonds to form titanate nanoplates and nanotubes. The hydrothermal treatment temperature and time were important factors for promoting the nucleation and growth of TNTs. The TNT catalyst with the largest surface area (389.32 m2 g-1) was obtained with a TiO2/NaOH ratio of 0.25, a hydrothermal treatment temperature of 130 ℃, and a hydrothermal treatment time of 36 h. Additionally, we investigated the photocatalytic activity of methyl violet 2B (MV) over the TNT catalysts under UV irradiation and found that the degradation efficiencies of the TNTs were higher than that of P25. Among the TNT catalysts, the TNT catalyst that was hydrothermally synthesized for 36 h (TNT 36 h) exhibited a 96.9% degradation efficiency and a degradation rate constant that was 4.8 times higher than P25 due to its large surface area, which allowed for more contact between the MV molecules and TNT surfaces and facilitated rapid electron transfer. Finally, these results were correlated with the specific surface area.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods

  • Lee, Kang;Choe, Han-Cheol;Ko, Yeong-Mu;Brantley, W.A.
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.164-170
    • /
    • 2012
  • Nanotubular structure formation on the Ti-6Al-4V and Ti-Ta alloy surfaces by electrochemical methods has been studied using the anodizing method. A nanotube layer was formed on Ti alloys in 1.0 M $H_3PO_4$ electrolyte with small additions of $F^-$ ions. The nanotube nucleation and growth of the ${\alpha}$-phase and ${\beta}$-phase appeared differently, and showed different morphology for Cp-Ti, Ti-6Al-4V and Ti-Ta alloys. In the ${\alpha}$-phase of Cp-Ti and martensite ${\alpha}^{\prime}$ and in the ${\alpha}^{{\prime}{\prime}}$ and ${\beta}$-phase of the Ti-Ta alloy, the nanotube showed a clearly highly ordered $TiO_2$ layer. In the case of the Ti-Ta alloy, the pore size of the nanotube was smaller than that of the Cp-Ti due to the ${\beta}$-stabilizing Ta element. In the case of the Ti-6Al-4V alloy, the ${\alpha}$-phase showed a stable porous structure; the ${\beta}$-phase was dissolved entirely. The nanotube with two-size scale and high order showed itself on Ti-Ta alloys with increasing Ta content.

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie;Li, Huigai;Huang, Di;Zheng, Shaobo;You, Jinglin
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1394-1402
    • /
    • 2018
  • This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.

Three-dimensional CFD simulation of geyser boiling in high-temperature sodium heat pipe

  • Dahai Wang;Yugao Ma;Fangjun Hong
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2029-2038
    • /
    • 2024
  • A deep understanding of the characteristics and mechanism of geyser boiling and capillary pumping is necessary to optimize a high-temperature sodium heat pipe. In this work, the Volume of Fluid (VOF) two-phase model and the capillary force model in the mesh wick were used to model the complex phase change and fluid flow in the heat pipe. Computational Fluid Dynamics (CFD) simulations successfully predicted the process of bubble nucleation, growth, aggregation, and detachment from the wall in the liquid pool of the evaporation section of the heat pipe in horizontal and tilted states, as well as the reflux phenomenon of capillary suction within the wick. The accuracy and stability of the capillary force model within the wick were verified. In addition, the causes of geyser boiling in heat pipes were analyzed by extracting the oscillation distribution of heat pipe wall temperature. The results show that adding the capillary force model within the wick structure can reasonably simulate the liquid backflow phenomenon at the condensation; Under the horizontal and inclined operating conditions of the heat pipe, the phenomenon of local dry-out will occur, resulting in a sharp increase in local temperature. The speed of bubble detachment and the timely reflux of liquid sodium (condensate) replenishment in the wick play a vital role in the geyser temperature oscillation of the tube wall. The numerical simulation method and the results of this study are anticipated to provide a good reference for the investigation of geyser boiling in high-temperature heat pipes.

Effects of Amount of Second Cold-Reduction on Secondary Recrystallization and Texture Development in Grain-Oriented Silicon Steel

  • Yoon, Young-Ku;Lee, Taek-Dong
    • Nuclear Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.129-140
    • /
    • 1971
  • 3.25% 규소를 함유하는 규소강을 융해·합금하고 압연·열처리하여 연질 자심재료로서 응용범위가 넓은 방향성 규소강판을 제조·실험했다. 이 연구에서는 잉고트 중의 망간 및 유황함량, 탄화물 석출과 유관한 열간압연 직후의 열처리조건, 2차 냉간 압연율 등이 2차 재결정 및 집합조직에 미치는 영향을 다루었다. 그 중에서도 특히 2차 냉간 압연율이 2차 재결정과 관련한 각종 활성화 에너지와 집합조직에 미치는 영향을 중점적으로 구명하였다. 2차 냉간 압연율이 10%인 시편은 응력 병형의 도입으로 인한 결정입계 이동으로 결정립성장 만이 관찰되었으며 핵생성을 동반한 2차 재결정은 일어나지 않았다. 2차 냉간 압연율이 30%인 시편에서는 2차 재결정을 위한 핵생성만 있었으며 2차 재결정이 완전히는 일어나지 않았다. 이 실험 조건하에서 50%의 2차 냉간압연율이 2차 재결정을 일으키기에 최적 냉간 압연율이며 가장 높은 직접도를 얻을 수 있는 압연율이었다.

  • PDF

산업 폐기물 소각시설의 입자상 물질 및 중금속의 배출특성 (Emission Characteristics of PMs and Heavy Metals from Industrial Hazardous Waste Incinerators)

  • 유종익;이성준;김기헌;장하나;석정희;석광설;홍지형;김병화;서용칠
    • 한국대기환경학회지
    • /
    • 제18권3호
    • /
    • pp.213-221
    • /
    • 2002
  • The emission characteristics of particulate matter (PMs) and heavy metals from hazardous industrial wast incinerators were investigated. The particle size distribution (PSD) of PM-10 showed different patterns for two tripes of incinerators; stoker and rotary kiln. However both types showed bimodal form at inlet of air pollution control devices (APCD) and each peak (mode) is located at smaller than 1 ${\mu}{\textrm}{m}$ and near 10 ${\mu}{\textrm}{m}$. It could explain the growth of fine PM by nucleation/coagulation/condensation of metal vapors for fine mode. The PSD of PM-10 after APCD was also influenced by APCD types that had different collection mechanism, and both electrostatic precipitator and bag filter showed less collection efficiency for particles ranged from 0.2 to 0.4 ${\mu}{\textrm}{m}$ and led to a mode in the range of 0.2 to 0.8 ${\mu}{\textrm}{m}$. However the hag filter showed two modes of PSD, while the electrostatic precipitator had one peak. The PMs and heavy metals emission factors, the representative value of emission quantity for sources, for tested facilities were developed. The emission factor of uncontrolled total PM and PM-10 were 14.7 and 7.05 kg/ton waste, respectively. The emission factors from this study were a little bit different with those from US EPA AP-42. It may thus be appropriate to use these results in the course of developing national emission factors.

Nanoparticle Formation from a Commercial Air Freshener at Real-exposure Concentrations of Ozone

  • Vu, Thai Phuong;Kim, Sun-Hwa;Lee, Seung-Bok;Shim, Shang-Gyoo;Bae, Gwi-Nam;Sohn, Jong-Ryeul
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2011
  • Occupational nanomaterial exposure is an important issue in the manufacture of such products. People are also exposed to various nanoparticles in their living environments. In this study, we investigated nanoparticle formation during the reaction of ozone and volatile organic compounds (VOCs) emitted from a commercial air freshener, one of many widely used consumer products, in a $1-m^3$ reaction chamber. The air freshener contained various VOCs, particularly terpenes. A petri dish containing 0.5 mL of the air freshener specimen was placed in the bottom of the chamber, and ozone was continuously injected into the center of the chamber at a flow rate of 4 L/min with an ozone concentration of either 50, 100 or 200 ppb. Each test was conducted over a period of about 4 h. The higher ozone concentrations produced larger secondary nanoparticles at a faster rate. The amount of ozone reacted was highly correlated with the amount of aerosol formation. Ratios of reacted ozone concentration and of formed particle mass concentration for the three injected ozone concentrations of 50, 100 and 200 ppb were similar to one other; 4.6 : 1.9 : 1.0 and 4.7 : 2.2 : 1.0 for ozone and aerosol mass, respectively.