DOI QR코드

DOI QR Code

Three-dimensional CFD simulation of geyser boiling in high-temperature sodium heat pipe

  • Dahai Wang (Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Yugao Ma (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Fangjun Hong (Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2023.06.06
  • Accepted : 2024.01.09
  • Published : 2024.06.25

Abstract

A deep understanding of the characteristics and mechanism of geyser boiling and capillary pumping is necessary to optimize a high-temperature sodium heat pipe. In this work, the Volume of Fluid (VOF) two-phase model and the capillary force model in the mesh wick were used to model the complex phase change and fluid flow in the heat pipe. Computational Fluid Dynamics (CFD) simulations successfully predicted the process of bubble nucleation, growth, aggregation, and detachment from the wall in the liquid pool of the evaporation section of the heat pipe in horizontal and tilted states, as well as the reflux phenomenon of capillary suction within the wick. The accuracy and stability of the capillary force model within the wick were verified. In addition, the causes of geyser boiling in heat pipes were analyzed by extracting the oscillation distribution of heat pipe wall temperature. The results show that adding the capillary force model within the wick structure can reasonably simulate the liquid backflow phenomenon at the condensation; Under the horizontal and inclined operating conditions of the heat pipe, the phenomenon of local dry-out will occur, resulting in a sharp increase in local temperature. The speed of bubble detachment and the timely reflux of liquid sodium (condensate) replenishment in the wick play a vital role in the geyser temperature oscillation of the tube wall. The numerical simulation method and the results of this study are anticipated to provide a good reference for the investigation of geyser boiling in high-temperature heat pipes.

Keywords

Acknowledgement

The authors are thankful for the support of the Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China.

References

  1. A. Faghri, Review and advances in heat pipe science and technology, J. Heat Tran. 134 (2012).
  2. A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes 5 (2014) 1-48.
  3. D. Jafari, W.W. Wits, B.J. Geurts, Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications, Appl. Therm. Eng. 168 (2020).
  4. C. Liu, R. Xie, N. Li, D. Lu, et al., Experimental study of loop heat pipes with different working fluids in 190-260 K, Appl. Therm. Eng. 178 (2020).
  5. Y. Tang, H. Tang, J. Li, S. Zhang, et al., Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes, Appl. Therm. Eng. 115 (2017) 1020-1030.
  6. M. El-Genk, J.M. Tournier, Uses of liquid-metal and water heat pipes in space reactor power systems, Front. Heat Pipes 2 (2011).
  7. H.N. Chaudhry, B.R. Hughes, S.A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev. 16 (2012) 2249-2259.
  8. S. Tang, C. Wang, X. Liu, G. Su, et al., Experimental investigation of a novel heat pipe thermoelectric generator for waste heat recovery and electricity generation, Int. J. Energy Res. 44 (2020) 7450-7463.
  9. C. Wang, S. Tang, X. Liu, G.H. Su, et al., Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery, Appl. Therm. Eng. 175 (2020).
  10. Y. Ma, M. Liu, B. Xie, W. Han, et al., Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods, Ann. Nucl. Energy 151 (2021).
  11. Y. Ma, E. Chen, H. Yu, R. Zhong, et al., Heat pipe failure accident analysis in megawatt heat pipe cooled reactor, Ann. Nucl. Energy 149 (2020).
  12. R. Hernandez, M. Todosow, N.R. Brown, Micro heat pipe nuclear reactor concepts: analysis of fuel cycle performance and environmental impacts, Ann. Nucl. Energy 126 (2019) 419-426.
  13. D.I. Poston, M.A. Gibson, T. Godfroy, P.R. McClure, KRUSTY Reactor Design, Nucl. Technol. 206 (2020) 13-30.
  14. Y. Ma, C. Tian, H. Yu, R. Zhong, et al., Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor, Prog. Nucl. Energy 140 (2021).
  15. Z. Zibandeh Nezam, B. Zohuri, Heat pipe as a passive cooling system driving new generation of nuclear power plants, Edelweiss Chem. Sci. J. 3 (2021) 9.
  16. Q. Guo, H. Guo, X.K. Yan, F. Ye, et al., Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe, Heat Tran. Eng. 39 (2018) 1631-1640.
  17. A. Alizadehdakhel, M. Rahimi, A.A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, Int. Commun. Heat Mass Tran. 37 (2010) 312-318.
  18. L. Asmaie, M. Haghshenasfard, A. Mehrabani-Zeinabad, M. Nasr Esfahany, Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling, Heat and Mass Transfer/Waerme- und Stoffuebertragung 49 (2013) 667-678.
  19. A.B. Solomon, K. Ramachandran, L.G. Asirvatham, B.C. Pillai, Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid, Int. J. Heat Mass Tran. 75 (2014) 523-533.
  20. B. Fadhl, L.C. Wrobel, H. Jouhara, CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a, Appl. Therm. Eng. 78 (2015) 482-490.
  21. H. Sun, S. Tang, C. Wang, J. Zhang, et al., Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology, Nucl. Eng. Des. 370 (2020) 110907.
  22. B.V. Derjaguin, N.V. Churaev, On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films, J. Colloid Interface Sci. 66 (1978) 389-398.
  23. M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, Int. J. Heat Mass Tran. 15 (1972) 1851-1863.
  24. P.C. Wayner, Adsorption and capillary condensation at the contact line in change of phase heat transfer, Int. J. Heat Mass Tran. 25 (1982) 707-713.
  25. R. Ranjan, J.Y. Murthy, S.V. Garimella, Numerical study of evaporation heat transfer from the liquid-vapor interface in wick microstructures, ASME International Mechanical Engineering Congress and Exposition, Proceedings 9 (2010) 1323-1333.
  26. R. Ranjan, J.Y. Murthy, S.V. Garimella, U. Vadakkan, A numerical model for transport in flat heat pipes considering wick microstructure effects, Int. J. Heat Mass Tran. 54 (2011) 153-168.
  27. Y. Ma, H. Yu, S. Huang, Y. Zhang, et al., Effect of inclination angle on the startup of a frozen sodium heat pipe, Appl. Therm. Eng. 201 (2022).
  28. H. Sun, M. Pellegrini, C. Wang, S. Suzuki, et al., CFD simulation based on film model of high temperature potassium heat pipe at different positions: horizontal, vertical, and 45◦ inclined, Prog. Nucl. Energy 154 (2022).
  29. Brackbill Ju, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335-354.
  30. A. Faghri, Heat pipe science and technology, Fuel Energy Abstr. 36 (1995) 285.
  31. C. Wang, D. Zhang, S. Qiu, W. Tian, et al., Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor, Nucl. Eng. Des. 265 (2013) 691-700.
  32. C. Wang, Z. Guo, D. Zhang, S. Qiu, et al., Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor, Prog. Nucl. Energy 68 (2013) 142-152.