DOI QR코드

DOI QR Code

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University) ;
  • Li, Huigai (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University) ;
  • Huang, Di (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University) ;
  • Zheng, Shaobo (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University) ;
  • You, Jinglin (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
  • Received : 2018.02.05
  • Accepted : 2018.04.29
  • Published : 2018.11.20

Abstract

This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. F.J. Li, H.G. Li, Y. Wu, D. Zhao, B.W. Peng, H.F. Huang, J.L. You, J. Mater. Res. 32, 2307 (2017) https://doi.org/10.1557/jmr.2017.115
  2. Y. Luo, A.N. Conejo, L. Zhang, L. Chen, L. Cheng, Metal. Mater. Trans. B 46, 2348 (2015) https://doi.org/10.1007/s11663-015-0401-3
  3. Y. Okada, S. Fukagawa, K. Ieda, K. Maya, H. Ikemiya, K. Shinme, Development of RH-powder top blowing process. Revue de Metallurgie 91, 923 (1994) https://doi.org/10.1051/metal/199491060923
  4. H. Okano, K. Tada, S. Fukagawa and Y. Tajiri, in 80 th Steelmaking Conference, p. 127 (1997)
  5. Z. Zulhan, Y.A. Patriona, C. Schrade, SEAISI Q. J. 42, 32 (2013)
  6. G. Lyudkovsky, P.D. Southwick, Metal. Mater. Trans. A 17, 1267 (1986) https://doi.org/10.1007/BF02650107
  7. J. Takamura and S. Mizoguchi, in The Sixth International Iron and Steel Congress, p. 591 (1990)
  8. S. Mizoguchi and J. Takamura, in The Sixth International Iron and Steel Congress, p. 598 (1990)
  9. Y.B. Kang, H.G. Lee, ISIJ Int. 50, 501 (2010) https://doi.org/10.2355/isijinternational.50.501
  10. Y. Kang, K. Han, J.H. Park, C. Lee, Metal. Mater. Trans. A 45, 4753 (2014) https://doi.org/10.1007/s11661-014-2470-3
  11. M. Wakoh, T. Sawai, S. Mizoguchi, ISIJ Int. 36, 1014 (1996) https://doi.org/10.2355/isijinternational.36.1014
  12. S. Kimura, K. Nakajima, S. Mizoguchi, H. Hasegawa, Metal. Mater. Trans. A 33, 427 (2002) https://doi.org/10.1007/s11661-002-0103-8
  13. D. Kim, K. Han, B. Lee, I. Han, J.H. Park, C. Lee, Metal. Mater. Trans. A 45, 2046 (2014) https://doi.org/10.1007/s11661-013-2132-x
  14. H.S. Kim, H.G. Lee, K.S. Oh, Metal. Mater. Trans. A 32, 1519 (2001) https://doi.org/10.1007/s11661-001-0239-y
  15. H. Ohta, H. Suito, ISIJ Int. 46, 480 (2006) https://doi.org/10.2355/isijinternational.46.480
  16. T. Sawai, M. Wakoh, Y. Ueshima, S. Mizoguchi, ISIJ Int. 32, 169 (1992) https://doi.org/10.2355/isijinternational.32.169
  17. H.S. Kim, H.G. Lee, O.H. Kyung Shik, Met. Mater. Int. 6, 305 (2000) https://doi.org/10.1007/BF03028076
  18. C. Sombuthawee, S.B. Bonsall, F.A. Hummel, J. Solid State Chem. 25, 391 (1978) https://doi.org/10.1016/0022-4596(78)90125-1
  19. W. Ostwald, Z. Phys, Z. Phys. Chem. 22, 289 (1897)
  20. M. Yoshimura, Bull. Am. Ceram. Soc. 67, 1950 (1988)
  21. H.S. Kim, H.G. Lee, W.G. Jung, ISIJ Int. 40, 82 (2000) https://doi.org/10.2355/isijinternational.40.Suppl_S82
  22. G.C. Wang, S.L. Li, X.G. Ai, C.M. Zhang, C.B. Lai, J. Iron. Steel Res. Int. 22, 566 (2015) https://doi.org/10.1016/S1006-706X(15)30041-8
  23. N. Koyama, F. Tsukihashi, N. Sano, Tetsu-to-Hagane 79, 1334 (1993) https://doi.org/10.2355/tetsutohagane1955.79.12_1334
  24. Z. Liu, K. Gu, K. Cai, ISIJ Int. 42, 950 (2002) https://doi.org/10.2355/isijinternational.42.950
  25. M. Wakoh, T. Sawai, S. Mizoguchi, Tetsu-to-Hagane 78, 1697 (1992) https://doi.org/10.2355/tetsutohagane1955.78.11_1697
  26. Z. Fan, Metal. Mater. Trans. A 44, 1409 (2013) https://doi.org/10.1007/s11661-012-1495-8
  27. D. Turnbull, B. Vonnegut, Ind. Eng. Chem. Res. 44, 1292 (1952) https://doi.org/10.1021/ie50510a031
  28. B.L. Bramfitt, Metal. Mater. Trans. B 1, 1987 (1970)
  29. S. Aramaki, R. Roy, J. Am, Ceram. Soc. 45, 229 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11133.x
  30. N. Yoshida, O. Umezawa, K. Nagai, ISIJ Int. 43, 348 (2003) https://doi.org/10.2355/isijinternational.43.348
  31. D. Brooksbank and K.W. Andrews, in Production and Application of Clean Steels, p. 186 (1972)
  32. X. Liu, Q. He, H. Wang, M.E. Fleet, X. Hu, Geosci. Front. 1, 91 (2010) https://doi.org/10.1016/j.gsf.2010.07.002
  33. Y. Iqbal, W.E. Lee, J. Am, Ceram. Soc. 83, 3121 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01692.x
  34. PDF-2, International Centre for Diffraction Data, PA, USA (1994)
  35. J.X. Chen, Steelmaking Common Chart Data Manual, 2nd edn. (Metallurgical Industry Press, Beijing, 1984)
  36. H. Todoroki, K. Mizuno, Iron Steelmak. 30, 60 (2003)
  37. B.Y. Shiro, Tetsu-to-Hagane 84, 85 (1998) https://doi.org/10.2355/tetsutohagane1955.84.2_85

Cited by

  1. Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel vol.27, pp.5, 2018, https://doi.org/10.1007/s42243-019-00334-7
  2. Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels vol.10, pp.9, 2018, https://doi.org/10.3390/cryst10090836
  3. Effect of aluminium content on the formation of inclusions in Fe-5Mn-xAl steels vol.48, pp.4, 2018, https://doi.org/10.1080/03019233.2020.1791549