DOI QR코드

DOI QR Code

Nanotubular Structure Formation on Ti-6Al-4V and Ti-Ta Alloy Surfaces by Electrochemical Methods

  • Lee, Kang (Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University) ;
  • Choe, Han-Cheol (Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University) ;
  • Ko, Yeong-Mu (Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University) ;
  • Brantley, W.A. (Department of Restorative, College of Dentistry, Ohio State University)
  • Received : 2011.07.28
  • Published : 2012.02.25

Abstract

Nanotubular structure formation on the Ti-6Al-4V and Ti-Ta alloy surfaces by electrochemical methods has been studied using the anodizing method. A nanotube layer was formed on Ti alloys in 1.0 M $H_3PO_4$ electrolyte with small additions of $F^-$ ions. The nanotube nucleation and growth of the ${\alpha}$-phase and ${\beta}$-phase appeared differently, and showed different morphology for Cp-Ti, Ti-6Al-4V and Ti-Ta alloys. In the ${\alpha}$-phase of Cp-Ti and martensite ${\alpha}^{\prime}$ and in the ${\alpha}^{{\prime}{\prime}}$ and ${\beta}$-phase of the Ti-Ta alloy, the nanotube showed a clearly highly ordered $TiO_2$ layer. In the case of the Ti-Ta alloy, the pore size of the nanotube was smaller than that of the Cp-Ti due to the ${\beta}$-stabilizing Ta element. In the case of the Ti-6Al-4V alloy, the ${\alpha}$-phase showed a stable porous structure; the ${\beta}$-phase was dissolved entirely. The nanotube with two-size scale and high order showed itself on Ti-Ta alloys with increasing Ta content.

Keywords

References

  1. A. Schoeder, F. Sutter, and G. Krekeler, Oral implantolgy. Newyork : Thieme Medical 35 (1991).
  2. T. Albrektsson, P. I. Branemark, H. A. Hansson, K. Kasemo, K. Larsson. I. Loundstrom, D. H. McQueen, and R. Skalak, Ann. Biomed. Eng. 11, 21 (1983).
  3. D. F. Williams, Boca Raton, FL: CRC Press 1, 10 (1981).
  4. B. Kasemo and J. Lausmaa, Int. J. Oral. Maxillofac. Implant 3, 247 (1988).
  5. C. M. Stanford and J. C. Keller, Oral. Bio. Med. 2, 83 (1991). https://doi.org/10.1177/10454411910020010601
  6. T. J. Webster, C. Ergun, R. H. Doremus, R.W. Siegel, and R. Bizios, Biomaterials 21, 1804 (2000).
  7. V. Zwilling, E. Darque-Ceretti, A. Bountry-Forveille, D. David, M. Y. Perrin, and M. Ancounturier, Surf. Interface Anal. 27, 629 (1999). https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  8. G. K. Mor, O. K. Varghes, M. Paulose, K. Shankar, and C. A. Grines, Sol. Energ. Mat. Sol. C. 90, 2011 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
  9. S. P. Albu, A. Ghicov, J. M. Macak, and P. Schmuki, Phys. Stat. Sol. 1, 65 (2007).
  10. K. S. Raja, T. Gandhi, and M. Misra, Electrochem. Commun. 9, 1069 (2007). https://doi.org/10.1016/j.elecom.2006.12.024
  11. S. E. Kim, H. W. Jeong, Y. T. Hyun, Y. T. Lee, C. H. Jung, S. K. Kim, J. S. Song, and J. H. Lee, Met. Mater. Int. 12, 145 (2007).
  12. Y. H. Jeong, K. Lee, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Film 517, 5365 (2009). https://doi.org/10.1016/j.tsf.2009.03.167
  13. H. C. Choe, Y. H. Jeong, and W. A. Brantley, J. Nanosci Nanotech. 10, 4684 (2010). https://doi.org/10.1166/jnn.2010.1716
  14. H. Tsuchiya, J. M. Macak, A. Chicov, Y. C. Tang, S. Fusimoto, M. Niinomi, T. Noda, and P. Schmuki, Electrochim. Acta 52, 94 (2006). https://doi.org/10.1016/j.electacta.2006.03.087
  15. Y. L. Zhou, M. Niinomi, and T. Akahori, Mater. Sci. & Eng. A 371, 283 (2004). https://doi.org/10.1016/j.msea.2003.12.011
  16. R. M. Afonso, G. T. Aleixo, A. J. Ramirez, and R. Caram, Mater. Sci. Eng. 27C, 908 (2007).
  17. L. Moffat and D. C. Larbolestier, Metall. Trans. 19A, 1687 (1988).
  18. M. Niinomi, J. Metal, June, 32 (1999).
  19. G. Lutjering and J. C. Williams, Titanium, 16, Springer, Germany (2003).
  20. Q. Y. Cai, M. Paulos, O. K. Varghese, and C. A. Grimes, J. Mater. Res. 20, 230 (2005). https://doi.org/10.1557/JMR.2005.0020
  21. J. Zhao, X. Wang, R. Chen, and L. Li, Solide State Commun. 134, 705 (2005). https://doi.org/10.1016/j.ssc.2005.02.028
  22. G. K. Mor, O. K. Varghese, M. Paulos, and C. A. Grimes, J. Mater. Res. 18, 2588 (2003). https://doi.org/10.1557/JMR.2003.0362
  23. S. Kaneco, Y. Chen, P. Westerhoff, and J. C. Crittenden, Scr. Mater. 56, 374 (2007).
  24. V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta 45, 924 (1999).
  25. J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki, J. Biomed. Mater. Res. 75A, 931 (2005).
  26. I. Siber, B. Kannan, and P. Schmuki, Electroch. & Solid-State Let. 8, J11 (2005). https://doi.org/10.1149/1.1833666
  27. W. Wei, J. M. Macak, and P. Schmuki, Electrochem. Commun. 10, 428 (2008). https://doi.org/10.1016/j.elecom.2008.01.004
  28. W. G. Kim, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Films 517, 5033 (2009). https://doi.org/10.1016/j.tsf.2009.03.165
  29. V. S. Saji and H. C. Choe, Met. Mater. Int. 17, 275 (2011). https://doi.org/10.1007/s12540-011-0414-7