Acknowledgement
This work was supported by the Korea Institute of Industrial Technology through Research and Development (EH-22-0012, JA-22-0012) and Ulsan Metropolitan City (IZ-21-0064) grants.
References
- Jitan, S.A., Palmisano, G., and C. Garlisi, "Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2," Catalysts, 10(2), 227 (2020). https://doi.org/10.3390/catal10020227
- Yang, Y., Li, J., "TiO2: A Critical interfacial material for incorporating photosynthetic protein complexes and plasmonic nanoparticles into biophotovoltaics," in Application of Titanium Dioxide, London, United Kingdom, IntechOpen (2017).
- Kim, Y. E., Byun, M. Y., Lee, K.-Y., and Lee, M. S., "Effects of chlorinated Pd precursors and preparation methods on properties and activity of Pd/TiO2 catalysts," RSC Adv., 10(68), 41462-41470 (2020). https://doi.org/10.1039/d0ra07510h
- Qu, J. and Lai, C., "One-dimensional TiO2 nanostructures as photoanodes for dye-sensitized solar cells," J. Nanomater., 2013, 762730 (2013).
- Feng, T., Feng, G. S., Yan, L., and Pan, J. H., "One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater," Int. J. Photoenergy, 2014(1), 563879 (2014).
- Li, Y., Guo, M., Zhang, M., and Wang, X., "Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates," Mater. Res. Bull., 44(6), 1232-1237 (2009). https://doi.org/10.1016/j.materresbull.2009.01.009
- Yu, Y., Zhang, P. Guo, L., Chen, Z., Wu, Q., Ding, Y., Zheng, W., and Cao, Y., "The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity," J. Phys. Chem. C, 118(24), 12727-12733 (2014). https://doi.org/10.1021/jp500252g
- Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., "Formation of titanium oxide nanotube," Langmuir, 14(12), 3160-3163 (1998). https://doi.org/10.1021/la9713816
- Tsvetkov, N., Larina, L., Kang, J. K., and Shevaleevskiy, O., "Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance," Nanomaterials, 10(2), 296 (2020). https://doi.org/10.3390/nano10020296
- Cossuet, T., Rapenne, L., Renou, G., Appert, E., and Consonni, V., "Template-assisted growth of open-ended TiO2 nanotubes with hexagonal shape using atomic layer deposition," Cryst. Growth Des., 21(1), 125-132 (2021). https://doi.org/10.1021/acs.cgd.0c00952
- Kim, M., Shin, N., Lee, J., Lee, K., Kim, Y.T., and Choi, J., "Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer," Electrochem. Commun., 132, 107133 (2021). https://doi.org/10.1016/j.elecom.2021.107133
- Lopez Zavala, M. A., Lozano Morales, S. A., and Avila-Santos, M. "Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature," Heliyon, 3(11), e00456 (2017). https://doi.org/10.1016/j.heliyon.2017.e00456
- Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., "Titania nanotubes prepared by chemical processing," Adv. Mater., 11(15), 1307-1311 (1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
- Yang, J., Du, J., Li, X., Liu, Y., Jiang, C., Qi, W., Zhang, K., Gong, C., Li, R., Luo, M., and Peng, H., "Highly hydrophilic TiO2 nanotubes network by alkaline hydrothermal method for photocatalysis degradation of methyl orange," Nanomaterials, 9(4), 526 (2019). https://doi.org/10.3390/nano9040526
- Li, P., Wang, J., Liu, L., Ma, J., Ni, Y., Wang, H., and Song, Y., "The effect of atmospheric pressure on the growth rate of TiO2 nanotubes: Evidence against the field-assisted dissolution theory," Electrochem. Commun., 132, 107146 (2021). https://doi.org/10.1016/j.elecom.2021.107146
- Baszczuk, A., Jasiorski, M., and Winnicki, M., "Low-temperature transformation of amorphous sol-gel TiO2 powder to anatase during cold spray deposition," J. Therm. Spray Technol., 27(8), 1551-1562 (2018). https://doi.org/10.1007/s11666-018-0769-0
- Muniyappan, S., Solaiyammal, T., Sudhakar, K., Karthigeyan, A., and Murugakoothan, P., "Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties," Mod. Electron. Mater., 3(4), 174-178 (2017). https://doi.org/10.1016/j.moem.2017.10.002
- Huang, J., Cao, Y., Huang, Q., He, H., Liu, Y., Guo, W., and Hong, M., "High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires," Cryst. Growth Des., 9(8), 3632-3637 (2009). https://doi.org/10.1021/cg900381h
- Li, J., Wang, Z., Zhao, A., Wang, J., Song, Y., and Sham, T. K., "Nanoscale clarification of the electronic structure and optical properties of TiO2 nanowire with an impurity phase upon sodium intercalation," J. Phys. Chem. C, 119(31), 17848-17856 (2015). https://doi.org/10.1021/acs.jpcc.5b04276
- Joo, J. B., Zhang, Q., Lee, I., Dahl, M., Zaera, F., and Yin, Y., "Mesoporous anatase titania hollow nanostructures though silica-protected calcination," Adv. Funct. Mater., 22(1), 166-174 (2012). https://doi.org/10.1002/adfm.201101927
- Huang, J., Cao, Y., Huang, Q., He, H., Liu, Y., Guo, W., and Hong, M., "High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires," Cryst. Growth Des., 9(8), 3632-3637 (2009). https://doi.org/10.1021/cg900381h
- Li, F., Liang, J., Zhu, W., Song, H., Wang, K., and Li, C., "Hydrogenation of m-chloronitrobenzene over different morphologies Ni/TiO2 without addition of molecular hydrogen," Catalysts, 8(5), 2-13 (2018).
- Kim, S. G., Dhandole, L. K., Lim, J. M., Chae, W. S., Chung, H. S., Oh, B. H., and Jang, J. S., "Facile synthesis of ternary TiO2 NP/Rh & Sb-codoped TiO2 NR/titanate NT composites photocatalyst: Simultaneous removals of Cd2+ ions and Orange (II) dye under visible light irradiation (Λ ≥ 420 nm)," Appl. Catal. B Environ., 224, 791-803 (2018). https://doi.org/10.1016/j.apcatb.2017.11.013
- Leng, M., Chen, Y., and Xue, J., "Synthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant," Nanoscale, 6(15), 8531-8534 (2014). https://doi.org/10.1039/c4nr00946k
- Li, C., Zong, L., Li, Q., Zhang, J., Yang, J., and Jin, Z., "Photocatalytic oxidation of propylene on Pd-loaded anatase TiO2 nanotubes under visible light irradiation," Nanoscale Res. Lett., 11(1), 271 (2016). https://doi.org/10.1186/s11671-016-1486-6
- Mowbray, D.J., Martinez, J. I., Lastra, G. J. M., Thygesen, K. S., and Jacobsen, K. W., "Stability and electronic properties of TiO2 nanostructures with and without B and N doping," J. Phys. Chem. C., 113(28), 12301-12308 (2009). https://doi.org/10.1021/jp904672p
- Tao, J., Luttrell, T., and Batzill, M., "A two-dimensional phase of TiO2 with a reduced bandgap," Nat. Chem., 3(4), 296-300 (2011). https://doi.org/10.1038/nchem.1006
- Singh, M., Goyal, M., and Devlal, K., "Size and shape effects on the band gap of semiconductor compound nanomaterials," J. Taibah Univ. Sci., 12(4), 470-475 (2018). https://doi.org/10.1080/16583655.2018.1473946
- Amano, F., Nogami, K., and Ohtani, B., "Visible light-responsive bismuth tungstate photocatalysts: Effects of hierarchical architecture on photocatalytic activity," J. Phys. Chem. C., 113(4), 1536-1542 (2009). https://doi.org/10.1021/jp808685m