• Title/Summary/Keyword: Nonsmooth optimization

Search Result 20, Processing Time 0.025 seconds

ON SUFFICIENT OPTIMALITY THEOREMS FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Lee, Gue-Myung
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.667-677
    • /
    • 2001
  • We consider a nonsmooth multiobjective opimization problem(PE) involving locally Lipschitz functions and define gen-eralized invexity for locally Lipschitz functions. Using Fritz John type optimality conditions, we establish Fritz John type sufficient optimality theorems for (PE) under generalized invexity.

  • PDF

ON NONSMOOTH OPTIMALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Son, Pham Tien
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.287-301
    • /
    • 2014
  • In this paper, we prove a necessary optimality theorem for a nonsmooth optimization problem in the face of data uncertainty, which is called a robust optimization problem. Recently, the robust optimization problems have been intensively studied by many authors. Moreover, we give examples showing that the convexity of the uncertain sets and the concavity of the constraint functions are essential in the optimality theorem. We present an example illustrating that our main assumptions in the optimality theorem can be weakened.

DIFFERENCE OF TWO SETS AND ESTIMATION OF CLARKE GENERALIZED JACOBIAN VIA QUASIDIFFERENTIAL

  • Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.473-489
    • /
    • 2001
  • The notion of difference for two convex compact sets in Rⁿ, proposed by Rubinov et al, is generalized to R/sub mxn/. A formula of the difference for the two sets, which are convex hulls of a finite number of points, is developed. In the light of this difference, the relation between Clarke generalized Jacobian and quasidifferential, in the sense of Demyanov and Rubinov, for a nonsnooth function, is established. Based on the relation, the method of estimating Clarke generalized Jacobian via quasidifferential for a certain class of function, is presented.

ON SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR VECTOR OPTIMIZATION PROBLEMS

  • Lee, Gue-Myung;Kim, Moon-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.287-305
    • /
    • 2003
  • Second order necessary optimality condition for properly efficient solutions of a twice differentiable vector optimization problem is given. We obtain a nonsmooth version of the second order necessary optimality condition for properly efficient solutions of a nondifferentiable vector optimization problem. Furthermore, we prove a second order necessary optimality condition for weakly efficient solutions of a nondifferentiable vector optimization problem.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

A SUPERLINEAR $\mathcal{VU}$ SPACE-DECOMPOSITION ALGORITHM FOR SEMI-INFINITE CONSTRAINED PROGRAMMING

  • Huang, Ming;Pang, Li-Ping;Lu, Yuan;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.759-772
    • /
    • 2012
  • In this paper, semi-infinite constrained programming, a class of constrained nonsmooth optimization problems, are transformed into unconstrained nonsmooth convex programs under the help of exact penalty function. The unconstrained objective function which owns the primal-dual gradient structure has connection with $\mathcal{VU}$-space decomposition. Then a $\mathcal{VU}$-space decomposition method can be applied for solving this unconstrained programs. Finally, the superlinear convergence algorithm is proved under certain assumption.

Development of an Educational Simulator of Particle Swarm Optimization: Application to Economic Dispatch Problems (교육용 PSO 시뮬레이터의 개발: 경제급전에의 적용)

  • Lee, Woo-Nam;Jeong, Yun-Won;Lee, Joo-Won;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.198-200
    • /
    • 2006
  • This paper presents a development of an educational simulator of particle swarm optimization (PSO) and application for solving the test functions and economic dispatch (ED) problems with nonsmooth cost functions. A particle swarm optimization is one of the most powerful methods for solving global optimization problems. It is a population-based search algorithm and searches in parallel using a group of particles similar to other AI-based heuristic optimization techniques. In developed simulator, lecturers and students can select the functions for simulation and set the parameters that have an influence on PSO performance. To improve searching capability for ED problems, a crossover operation is proposed to the position update of each individual (CR-PSO). To verify the feasibility of CR-PSO method, numerical studies have been performed for two different sample systems. The proposed CR-PSO method outperforms other algorithms in solving ED problems.

  • PDF

THE LAYOUT PROBLEM OF TWO KINDS OF GRAPH ELEMENTS WITH PERFORMANCE CONSTRAINTS AND ITS OPTIMALITY CONDITIONS

  • ZHANG XU;LANG YANHUAI;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.209-224
    • /
    • 2006
  • This paper presents an optimization model with performance constraints for two kinds of graph elements layout problem. The layout problem is partitioned into finite subproblems by using graph theory and group theory, such that each subproblem overcomes its on-off nature about optimal variable. Furthermore each subproblem is relaxed and the continuity about optimal variable doesn't change. We construct a min-max problem which is locally equivalent to the relaxed subproblem and develop the first order necessary and sufficient conditions for the relaxed subproblem by virtue of the min-max problem and the theories of convex analysis and nonsmooth optimization. The global optimal solution can be obtained through the first order optimality conditions.