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ON SUFFICIENT OPTIMALITY
THEOREMS FOR NONSMOOTH
MULTIOBJECTIVE OPTIMIZATION PROBLEMS

MooN HEe KiM AND GUE MYUNG LEE

ABSTRACT. We consider a nonsmooth multiobjective optimization
problem (PE) involving locally Lipschitz functions and define gen-
eralized invexity for locally Lipschitz functions. Using Fritz John
type optimality conditions, we establish Fritz John type sufficient
optimality theorems for (PE) under generalized invexity.

1. Introduction and Preliminaries

Multiobjective optimization problems consist of conflicting objective
functions and constraint sets, and the problems are to optimize the ob-
jective functions over the constraint sets under some concepts of solution,
for example, properly efficient solutions, efficient solutions and weakly
efficient solutions. There are two types of necessary optimality condi-
tions. Those are Fritz John type necessary optimality conditions [13]
and Kuhn-Tucker type necessary optimality conditions [3, 4, 8] for mul-
tiobjective optimization problems. The Kuhn-Tucker type optimality
conditions are sufficient ones for feasible points to be (weakly) efficient
under generalized convexity or invexity assumptions. Most of authors [5,
6, 7, 9, 11, 12, 14] have tried to obtain the Kuhn-Tucker type sufficient
optimality theorems for multiobjective optimization problems.

In this paper, we consider a nonsmooth multiobjective optimization
problem (PE) involving locally Lipschitz functions and define generalized
invexity for locally Lipschitz functions. Using Fritz John type optimality
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conditions, we establish Fritz John type sufficient optimality theorems
for (PE) under generalized invexity. Also, we extend Theorem 4 of Zhao
[15] for a single optimization problem to (PE), and obtain a new Kuhn-
Tucker type sufficient optimality theorem for (PE).

Let g : X — R be a function. Let X be a real Banach space and let
X™* be the topological dual of X. Then g is said to be locally Lipschitz
if Vz € X, 3 a neighborhood N(z) of x and K, > 0 such that Vy,z €
N(z),

l9(y) — 9(2)| < Kally — z||.

Consider the following nonsmooth multiobjective optimization prob-
lem with equality and inequality constraints:
(PE) Minimize  f(x)
subject to  g(x) £0, h(z) =0,
where f = (fi,-,fp) : X — RP, g:= (g1, ,gm) : X — R™ and
h:= (hy,--- ,ht) : X — R* are locally Lipschitz functions.

Optimization of (PE) is finding (weakly) efficient solutions defined as
follows;

DEFINITION 1.1. (1) A point Z € X is said to be an efficient solution
of (PE) if there exists no other feasible point z € X such that f(z) £
7(z) and f(z) # f().

(2) A point Z € X is said to be a weakly efficient solution of (PE) if
there exists no other feasible point z € X such that f(z) < f(Z).

DEFINITION 1.2. ([1]) Let g : X — R be a locally Lipschitz function.
(1) The generalized directional derivative of the function g at x in the
direction d is denoted by ¢°(z; d):

g°(z;d) = limsup %[g(y +td) — g(y)]-

y‘iﬂz

tl0

(2) The Clarke generalized subgradient of the function g at x is denoted
by
O%(z) ={£ € X*: ¢g%x;d) > (& d) vde X}.
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DEerFINITION 1.3. ([1]) A locally Lipschitz function g : X — R is said

to be regular at x if
(i) for alld € X, the usual one-sided directional derivative g'(z; d) exists;

and
(ii) for all d € X, ¢'(z;d) = ¢°(z;d).

DEFINITION 1.4. ([2, 7]) Let g : X — R be a locally Lipschitz func-
tion and 7 € X.

(1) g is n-pseudo-invex function at Z if and only if 3 a function 7 :
X x X — X such that

Vy € X, g°(Z;n(y, 7)) 2 0 implies g(y) 2 g(z),
equivalently,

Vy € X, V& € 0°(z), gly) < g(z) implies (&, n(y,Z)) <O.

(2) g is n-quasi-invex function at Z if and only if 3 a function 7 :
X x X — X such that

Vy € X, g(y) < 9(Z) implies g°(Z;n(y,Z)) £ 0,
equivalently,

Vy € X, V€ €0°(Z), g(y) = g(Z) implies (¢, n(y,Z)) £0.

(3) g is strictly n-pseudo-invex function at Z if and only if 3 a function
n:X x X — X such that

Vy € X with Z #y, g°(Z;n(y,Z)) 2 0 implies g(y) > g(z),

equivalently, V¢ € 0°¢g(Z), g(y) < 9(z) implies (£, n(y,Z)) < 0.

By Theorem 6.1.1 in [1], we can obtain the following necessary Fritz
John type optimality theorem of (PE);
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THEOREM 1.1. If Z is a weakly efficient solution of (PE), then there
exist i € RP, §j € R™ and 7z € RF such that

m

4 k
0€) mo°fi(®) + ) 9;0°;(%) + Y 20(z),
i=1 =1

Jj=1

that is, there exist a; € 0°fi(%), ¢ = 1,--- ,p, b; € 0°,;(Z), j =
1,---,m and ¢ € O°hy(Z), l=1,--+ ,k such that

P m k

(1.1) 0= fai+ Y §ibj+ ) za,
i=1 j=1 1=1

and

(1.2) ¥;9;(Z) =0, j=1,--- ,m,

(1'3) (ﬁlv"' ’ﬂpfgla"' ’gm)gov

(1,4) (ﬁl,...,ﬁmgl’...,gm’zh...,gk)¢0.

REMARK 1.1. In Theorem 1.1, if there exists z* € X such that
bj, z*) <0, jeI(Zx):={i:g:(x) =0}, (o, 2*) =0, I =1,--- )k
and ¢;,¢q,- -+ , ¢k are linearly independent, then we have

(1.5) (B1,- - s bp) # 0.

2. Sufficiency of the Fritz John type conditions

When p = 1 and all functions are continuously differentiable, the op-
timality conditions (1.1)-(1.4) reduce to the Fritz John ones for a single
optimization problem found in [10]. So, we call the optimality condi-
tions (1.1)-(1.4) the Fritz John type optimality ones for (PE). When
p = 1 and all functions are continuously differentiable, the optimal-
ity conditions (1.1)-(1.3) and (1.5) become the Kuhn-Tucker ones for a
single optimization problem found in [10]. So, we call the optimality
conditions (1.1)-(1.3) and (1.5) the Kuhn-Tucker type optimality ones
for (PE).

We now prove the following Fritz John type sufficient optimality the-
orem of (PE):
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THEOREM 2.1. Let i€ R?, j€ R™, z € R* and % € X, along with
ji, ¥ and % satisfy the following conditions ;

m k
(2.1) Oeijmaﬁif E:ﬂ }:zym
(2.2) 7'9(z) =0,
(2.3) 9(2) £ 0,
(24)  h(@) =0,
(2.5) (8,9) 20, (8,9,2) #0.

Assume that
(a) f is n-quasi-invex at T and §'g + z'h is strictly n-pseudo-invex at
Z, and g and h are regular functions; or
(b) ftf is n-quasi-invex at T and §'g + zth is strictly n-pseudo-invex
at T, and g and h are regular functions; or
(c) ptf + gtg + z'h is strictly n-pseudo-invex at Z, and f,g and h are
regular functions.

Then 7 is an (weakly) efficient solution of (PE).
PROOF. (a) Suppose that Z is not an efficient solution of (PE). Then
there exists z* € X such that f(z*) £ f(Z), f(z*) # f(&), g(z*) £0

and h(z*) = 0. By the n-quasi-invexity of f at Z, we have (§;, n(z*,Z)) <
0 for any &; € 8°f;(Z), i=1,---,p. Thus fi; 2 0 implies that

(S nen) 50

Therefore, from (2.1), we have

m k
<Zﬂj§~j+zfzfz, n(z” 3?)>Z
j=1 l

for some &; € 8°g;(Z) and £ € 8°hy(Z). By the regularity of g; and hy
at 7, (€,m(z*,Zz)) 2 0 for some £ € 8°(§'g+ zth) (see Corollary 3 at the
page 40-th page in [1]) and hence (§'g + z'h)°(Z; n(z*,Z)) 2 0. Thus, by
the strict n-pseudo-invexity of §'g + zth at Z, we have

gg(z*) + 2th(z*) > §'9(&) + 2°h(Z).
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Since h(z*) = 0, from (2.4), we have g'g(z*) > y'g(Z). From (2.2), we
have

7'9(z") >0,
which contradicts the fact that g*g(z*) < 0. Hence the result holds.

(b) Suppose that Z is not an efficient solution of (PE). Then there
exists z* € X such that f(z*) < f(Z), f(z*) # f(@), g9(z*) £ 0
and h(z*) = 0. Since i 2 0 and f(z*) £ f(Z), we have a'f(z*) <
it f(Z). Thus, by the n-quasi-invexity of iff at Z, we have

<iﬁi§i; n(m*,£)> <0,
i=1

for any & € 0°fi(Z), i =1,---,p. By the same method as the proof of
the part (a), we can prove the part (b).

(c) Suppose that Z is not an efficient solution of (PE). Then there
exists * € X such that f(z*) £ f(z), f(z*) # f(Z), g(z*) £ 0 and
h(z*) = 0. Let I(Z) := {i : 9;(Z) = 0}. Then it follows from (2.2), (2.3)
and (2.5) that §; = 0 Vi ¢ I(Z). Since g;(z*) £ ¢,(Z) Vj € I(Z) and
hi(z*) = hy(Z), we have

By the regularity of 3°7_, fiifi + 3" c1(z) 9397 + Ele Zihy at T,

k

3C(Zﬁifi+ Z gjgj+221hl)(:?)
i=1

jel(z) =1
P k
= Z ﬁiacfi(.’f?) + Z yjacgj ((E) + Z Elachl(.’i‘)
i=1 FEI(F) =1
(see Corollary 3 at the 40-th page in [1]). So, by the strict n-pseudo-
invexity of YF_, fifi +3;e1() Ui +3°F | Zhi, we have V€ € 6°
it Bifi + X jerz ¥id%i + Sy zih)(Z),
(&n(a*, ) < 0.
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This contradicts (2.1). O

THEOREM 2.2. Let i € RP, y€ R™, z € RF and x € X, along with
i, g and Z satisfy the (2.1)—(2.5) conditions ;
Assume that
(a) f is p-quasi-invex at &, §'g is strictly n-pseudo-invex at T and zth
is n-quasi-invex at &; or
(b) u'f is n-quasi-invex at &, §'g is strictly n-pseudo-invex at ¥ and
zth is p-quasi-invex at Z.

Then Z is an (weakly) efficient solution of (PE).

PROOF. (a) Suppose that Z is not an efficient solution of (PE). Then
there exists z* € X such that f(z*) £ f(Z), f(z*) # f(&), g(z*) £
0 and h(z*) = 0. Then by the n-quasi-invexity of f at Z, we have
(&i,m(z*,Z)) < 0forany £ € 0°fi(Z), i=1,---,p. Since z = 0, we have

(26) <}£_: ki, (=) S0,

for any £ € 9°fi(z), i = 1,---,p. Since z'h(z*) = z'h(Z), and Zh is
n-quasi-invex at 7, we have

k
(2.7) (X aé, n(=,3)) <0
=1

for any £ € 8°hy(&), 1=1,--- ,k. From (2.1), we have

<ij iy (@) 20,

for some &; € 0°g;(Z), j = 1,--- ,m. Thus, by the strict n-pseudo-
invexity of §*g at Z, we have g'g(z*) > §°g(Z). From (2.2), we have

g'g(z") > 0,
which contradicts the fact that §'g(z*) < 0. Hence the result holds.

(b) Suppose that Z is not an efficient solution of (PE). Then there
exists * € X such that f(z*) £ f(Z), f(z*) # f(Z), g(z*) £ 0 and
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h(z*) = 0. Since i = 0 and f(z*) £ f(Z), we have p'f(z*) £ @' f(Z).
Thus, by the n-quasi-invexity of gt f at Z, we have

<zp:ﬁi€i, n(x*,z)> <o,
i=1

for any &; € 9°f;(%), ¢ =1,---,p. By the same method as the proof of
the part (a), we can prove the part (b). (o

3. Sufficiency of the Kuhn-Tucker type conditions

The following are Kuhn-Tucker type necessary conditions for a weakly
efficient solution Z of (PE):
(KT) there exist & € RP, j € R™, z € R¥, a; € 8°f;(%), i =
1,---,p, bj €8%;(&), j=1,---,m, ¢ € ON(Z), I =1,--- ,k, such

that
14 m k
0= Zﬂ,iai + Zgjbj + Zzlcl,
=1 l=1

i=1 =
y]gj(j) =0> J: 17"' s m,
(/7/1)"' 9/—1’1)7371"“ 7gm)§o’
(,al)"' 7["1’)750

Now we give a condition (%) with a;, b;, c;

(¥) there exists a vector-valued function n : X — X such that for
any feasible point of (PE),

fi(z) — fi(®) 2 (ai, n(zx)), i=1,---,p
—g;(%) 2 (bj, n(=x)), j=1,---,m,

0;<

-~

1\

M=

Zia, 77(5”)>-

14

Il
_

Now we extend Theorem 4 of Zhao [15] for a single optimization prob-
lem to (PE), and obtain a new Kuhn-Tucker type sufficient optimality
theorem of (PE) as follows;
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THEOREM 3.1. Let the conditions (KT) and (x) hold at a feasible
point T of (PE). Then % is a weakly efficient solution of (PE).

PROOF. Suppose that % is not a weakly efficient solution of (PE).
Then there exists z* € X such that f;(z*) < fi(Z), i=1,---,p. Then
we have

0> Zﬁi(fi(x*) — fi(Z))
i=1

z)> (by condition (x))

I 1\
/I\ @/\ i
) 5
'M.E HM
‘El
& Q

<
il
-

biy () — <fz-cl, (@)  (y (KT))

1\
\gE
Qi

39;(Z)  (by condition (x))

o,
i
ja

fl

0 (by (KT)).

This is a contradiction. So, Z is a weakly efficient solution of (PE). [

The following example shows that even though f; and g; are differ-
entiable (and hence locally Lipschitzian), the converse of Theorem 3.1
does not hold in general.

ExAMPLE 3.1. Consider the following differentiable multiobjective
problem:

(P) Minimize (z,—z%)
subject to xEY:={m€R|—x+—;-§O}.
Then for any € Y, x is a weakly efficient solution of (P). However,

the condition () does not hold for # = 7. Indeed, suppose that there
exists a function n : R x R — R such that for any x € Y
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Then for any z € Y,

Hencexz-—;li§n(x) §x———%f0ranyx€Y. Thusmz—%§x—%for
any z € Y. This is impossible. Hence the condition (*) does not hold
1

atx=§.
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