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ON SECOND ORDER NECESSARY
OPTIMALITY CONDITIONS FOR
VECTOR OPTIMIZATION PROBLEMS

GUE MYUNG LEE AND MooN HEE KiMm

ABSTRACT. Second order necessary optimality condition for prop-
erly efficient solutions of a twice differentiable vector optimization
problem is given. We obtain a nonsmooth version of the second
order necessary optimality condition for properly efficient solutions
of a nondifferentiable vector optimization problem. Furthermore,
we prove a second order necessary optimality condition for weakly
efficient solutions of a nondifferentiable vector optimization prob-
lem.

1. Introduction and preliminaries

Vector optimization problems are those where two or more objectives
are to be minimized on some set of feasible solutions. In such problems
we deal with conflicts amongst objectives. Thus such problems have
important applications in economics, game theory and statistical deci-
sion theory (see [1]-[5]). The objective functions in the problems may be
differentiable (smooth) or nondifferentiable (nonsmooth). In most cases
we can not find a feasible solution which is optimal in the sense that it
minimizes all the objectives simultaneously. So, in vector optimization
we should use concepts of solutions different from the just mentioned
requirement of optimality. For vector optimization problems, there are
three kinds of solutions, that is, properly efficient solution, efficient so-
lution and weakly efficient solution (see [5, 6]).
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The concept of vector variational inequality was introduced by Gian-
nessi [7] in 1980. Also, he [8] gave first order necessary optimality con-
ditions, which are described by vector variational inequality, for efficient
solutions or weakly efficient solutions of a differentiable convex vector
optimization problem. Some authors have tried to improve Giannessi’s
idea on necessary optimality conditions (for example, see [9]-[12]).

Recently, nonsmooth analysis for treating nondifferentiable scalar op-
timization problems and nondifferentiable vector optimization problems
has been greatly developed. Using generalized directional derivatives,
generalized subgradients, derivatives for multifunctions, normal cones
and tangent cones appeared in nonsmooth analysis, many authors have
improved necessary optimality conditions for optimization problems (see
[11]-[23] and therein references). In particular, using tangent cones and
generalized directional derivatives, Ward and Lee {11, 12] obtained first
order necessary optimality conditions for properly efficient solutions or
weakly efficient solutions of nondifferentiable vector optimization prob-
lems.

The purpose of this paper is that following proofs of first order neces-
sary optimality theorems of Ward and Lee [11, 12] for nondifferentiable
vector optimization problems, we obtain second order necessary opti-
mality conditions for the problems. We give a second order necessary
optimality condition for properly efficient solutions of a twice differen-
tiable vector optimization problem, and then obtain a nonsmooth version
of the second order necessary optimality condition for properly efficient
solutions of a nondifferentiable vector optimization problem. Further-
more, we prove a second order necessary optimality condition for weakly
efficient solutions of a nondifferentiable vector optimization. Our main
results can be regarded as second order versions of recent ones in Ward
and Lee [11, 12].

Let S be a nonempty subset of R” and f; : R - R, 1 =1,...,p,
functions.

Consider the following vector optimization problem (VP):

(VP) Minimize f(@) = (fi(z),..., fp(z))
subject to x€S.

Solving (VP) means finding the efficient solutions which are defined
as follows:

DEFINITION 1.1. (1) y € S is said to be an efficient solution of (VP)

if for any r € S, (fl(x) - fl(y)7 e '7fp(:1;) - fp(y)) ¢ ‘Ri \ {0}7 where
R% is the nonnegative orthant of RP.
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(2) y € S is called a properly efficient solution of (VP) if y € S is
efficient for (VP) and if there exists M > 0 such that for each ¢ =
1,...,p, we have

A

fily) — fi(z)

<M

filz) = fily)

for some j such that f;(z) > f,;(y) whenever z € S and fi(z) < fi(y).
(3) y € S is said to be a weakly efficient solution of (VP) if for any

zesS, (filz)—fily),..., fo(x)— foly)) & — intRE | where intR” is the
interior of R¥ .

The quantity %Eg—g:—% may be interpreted as the marginal trade-off

for the objective functions f; and f; between y and z. Geoffrion [24]
defined the concept of the proper efficiency to eliminate the unbounded
trade-off between the objective functions of (VP).

Now we introduce the normal cone and the singular approximate
subdifferential studied by Mordukhovich [17].

DEFINITION 1.2. (1) Let S be a nonempty subset of R” and = € R”™.
Define

P(S,z) ={wecS ||z—w|= uelg |z—z|}.

Let Z € clS, where clS is the closure of the set S. The normal cone to
S at T is defined by

N(S,z) :={y €R" | Hyn} — vy, {z0n} — 7, {ta} C(0,+00),
{en} C R™ with ¢, € P(S,z,) and y, = tn(z, —cn)}-

(2) Let f : R™ — R be a function and z € R™. The singular approzimate
subdifferential of f at x is defined by

0% f(z) == {«" € R" | (z7,0) € N(epif, (z, f(z)))},

where epif := {(z,7) e R" xR | f(z) S r}.
If S is a convex set, then N(S, z) is the usual normal cone.

REMARK 1.1 ({17, Proposition 2.3]). A lower semicontinuous function
f is Lipschitz near z if and only if 0 f(z) = {0} .
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DEFINITION 1.3. (1) Let S be a nonempty closed subset of R" and
x € S. The adjacent cone to S at x is defined by

T(S,z) :={veR"|V¥J>0,3\>0 s.t. Vt € (0,)),Jy € B(v,0)
with z + ty € S}
={veR" | V{t,.} 10, IH{v,} — v with z+t,v, € S},
where B(v,8) = {y € R™ | |ly — v|| < 6}.
The contingent cone to the set S at x is the set

K(S,z) :={veR" | V6 >0,3t € (0,6),y € B(v,d) with z +ty € S}
={veR" | H{t,} - 0", {vp,} - v with = + t,v, € S}.

(2) Let f : R® — R := [—00, +00] be finite at z € R™. For the adjacent

cone T, we define the T directional derivative of f at x in the direction

y € R™ by

fT(z;y) = inf{r eR | (y,7) € T(epif, (z, f(2)))}.

We can prove an expression of f7(xz;y); for any y € R,

fT(a:; y) := limsup inf flz+tv) - f(z)

t—0+ YV t

:=supinf sup inf Hettv) - f(x)7
e>0 0>0 £€(0,8) vEB(y,€) t

where B(y,e) :={z € R" | || z —y ||< €}.
Also, we can check that if f is differentiable at z € R™, then

f(zy) =(Vi(=z),y)

for any y € R™, where V f(z) is the gradient of f at z and (-,-) denotes
the inner product on R™. Also, if f is Lipschitz near z, f7(z;y) =
ft(z;y) (see, [22]), where

fF(z;y) = limsup flz+ty) — f(e) .

t—07T t
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Now we give second order tangent sets, which are found in [20, 21];

DEFINITION 1.4. Let S be a nonempty closed subset of R™, and let
z € S and v € R™.
(a) The second order contingent set is defined by

K?2(S,x,v)
1
={y eR™ | Vs >0,3te€ (0,5),we Bly,d) with z +tv+ §t2w €S}

1
={yeR" | 3{t.} - 07, {y,} -y with z+t,0+ Et%yn € S}.

e second order aajacent set is defined by
b) Th d ord dj is defined b,
T?(S, z,v)
={yeR" | V6 >0,3X >0 s.t. Vt € (0,)),3w € B(y, )

1
with = + tv + §t2w € S}

={yeR" | Y{t,} = 0", I{y,} — y with = +t,v+ %tiyn € S}

K?2(8,z,v) and T?%(S,x,v) are (possibly empty) closed sets, but not
necessarily cones. T?(S,z,v) C K%(S,z,v), but the converse inclusion
may not be true.

REMARK 1.2. Let S C R" and z € S. Then K?(S,z,0) = K(S,z)
and T2(S,z,0) = T(S, z).

Now we will define second order directional derivative with the second
order adjacent set.

DEFINITION 1.5. Let f : R* — R be finite at z, and suppose that

fT(x;v) is finite. The T? directional derivative of f at x with respect to
v € R™ y e R"is defined by

& fT(z;v,9) :=inf {r €R | (y,7r) € T*(epif, (x, f(2)), (v, fT (z;)))}-

The following proposition can be found in [21]:
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PROPOSITION 1.1. Let f : R® — R be finite at x € R™. If fT(x;v) is
finite, then for all y € R™,

&7 (z;0,)
= limsup inf 2(f(z + tv + t2w/2) — f(z) — tf7 (z;v))/¢?

t—07T vy

:=sup inf sup inf 2(f(z +tv+ tPw/2) — f(x) — tfT (x;v)) /2
e>0 A>0¢¢(0,1) wEB(ys€)

REMARK 1.3. Let f : R® — R be twice differentiable at =z € R™.
Then for all y € R™,

d*fT(z;0,9) = (VF(2),9) + (v, V2 f(z)v).

REMARK 1.4 ([20]). Suppose f : R® — R is finite at z € R™ and
¥ (x;y) is finite. Then we have
(1) if v =0, then & f7 (z;v,y) = [ (z;y),
(2) epid®fT (z;v,-) = T?(epi f, (z, f(2)), (v, fT (z;0)))-

REMARK 1.5 ([23]). If f is Lipschitz near z, then d?fT(z;v,y) =
d?f*(z;v,y), where

2(f(x +tv +t%y/2) — f(x) — tf (z;0))
2 ’

d?f*(z;v,y) := limsup
t—ot

2. Second order necessary optimality conditions

Now we will give a second order necessary optimality conditions for
properly efficient solutions of the vector optimization problem (VP) in-
troduced in Section 1.

THEOREM 2.1. Suppose that f;,i =1,...,p, are twice differentiable.
Let Z € S be a properly efficient solution of (VP). If (V fx(Z),v) =
0, k=1,...,pand v € K(S,Z), then for eachi € {1,...,p},

{yI(Vfi(Z),y) + (v, V2 f;(Z)v) < 0}
N{y | (V£(@),y) + (v, V2 ;@) 0,5 # i}
N K%(S,z,v) =0,
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equivalently,

{y | (VA@),y)+ (v, V2f1(Z)), ..., (Vfo(Z),y) + (v, V2 fp(Z)v))
€ —REN\{0}}NK*(S,z,v) =0.

Proof. Following the approach used in the proof of Theorem 3.16
in [6], we will prove this theorem. Let Z € S be a properly efficient
solution of (VP). Let v € K(S,Z) be such that (ka v) =0, k=
1,...,p. Suppose to the contrary that there exist i € {1,...,p} and y €
K2(S z,v) such that (Vfi(z) ),y)+ (v, V3fi(z v> < 0 and (Vf;(z) y> +
(v, V2f;(Z)yv) <0, j #i. Sincey € K*(S, x v) there exist sequences
{tn} — 0%, {yn} — v such that Z + t,v + 5t,%yn € S. By the twice
differentiability of f; at Z, we have

fi(Z +thv + lth?Jn) — fi(%)

2
= 1 2 1 1 2 2 = 1 2
= (Vfi(Z), thv + §tn Yn) + §<tnv + itn Yn, V2Fi(Z) (tnv + 51tn Yn))
1 1
+ ||tnv + 5tnzynn2 - Bi@; tv + §tn2yn),

where lim,, o 3;(Z;t v + %thyn) = (. Since <Vfi(a_c),v> = 0, we have

fi(z +tv+ lt,,,"’yn) — f:(2)

tn? 2

1
= SV ) + 50+ ot VAE+ o)

1 1
Qtnynnz . Bi(f; thv + itn2yn)'

+ ||v +
Then, we have
1
t—2

= {Vi(@),y) + 5 (0 V2 ful) <0

lim
n—od

[fz(j +tyv+ %thyn) - fz(j):|

So, there exists a natural number N such that for all n 2 N,

") [fi(ﬂE + thv + %tnzyn) - fi(a_c)} <0
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Thus we have
1
fi(Z+tov+ —tnzyn) < fi(z) for all n 2 N.

Since z is an efficient solution of (VP), by choosmg a subsequence of
{Z+t,v+3t2y,}, if necessary, we can assume that I = {j : f;(Z+t,v+
ltn Yn) > f;j(Z)} is constant for all n = N. By the twice differentiability
fi» J€ I, at Z, we have

1 -
fj(j + v+ itn2'£/n) - fJ(x)
= Loy 1 1 5 2 (= 1o
= (Vfij(Z), thv + 5t Yn) + —2-<tnv +5tn Yn, V2 £ (Z) (tnv + 5t Yn))

1 1
+ltnv + 5tnynl® - B (3 tnv + Stn’ym),
where lim,, o 8;(%; thv + 5tn%yn) = 0. Since (V f;(Z),v) = 0, we have

1
Etnyn)>

1 1
+ 2”” + itnynllz : /Bj(a_’;tnv + itnzyn) >0

(V55@),m) + (v + gty V@) 0 +

for all n 2 N and for all j € I. Thus (Vf;(Z),y) + (v, V2f;(z)v) 2
0 for all j € I. Since (Vf;(®),y) + (v, V2f;(Z) (Zyv) < 0 for all j €
I, (V£i(@),y) + (v, V2f;(Z)v) = 0. For all j € I, we have

fi(@)— fi(@FHtnv+itn’yy,)
Fi (@ +tnvt3tayn)—F; (@)

—[3(9£@)4n) + 1 (v+ L tnyn, V2 £ (@) 0+ S tayn) ) Hlvt L tnyn 2 -8i (@itnvt L tn yn)]
L{(V55@)un)+ 5 (v+ Ltnyn, V2 £ @) 0+ L tnyn) ) H 10+ L tnyn12-8; Fitnvt S ta2yn)

Thus for all j € I ,
o fil@) = fi@ 4 v+ GtaPyn)
n—00 fj(x+tn1)+ 5tn yn) fj(.'l_',') ’

which contradicts the proper efficiency of Z. Hence for each i € {1, ...,
rh

{W(V£:(z),y) + (v, V2 fi(2)v) < 0}
N {yl(Vf;(z) y> + (v, V2 f;(Z)v) £ 0,5 # i}
N K*(S,%,v) =
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Hence we obtain the conclusion of Theorem 2.1. O

REMARK 2.1. Since K?(S,z,0) = K(S,%) and 0 € K(S,Z), letting
v = 0, we can obtain from Theorem 2.1 that if Z € S is a properly
efficient solution of (VP), then for each i € {1,...,p},

{v | (V£i(@),y) <0} {y | (V;(z),y) 0, j#i}NK(S &) =0,
equivalently,

{y ] (<Vf1(:7:),y>,. ] <Vf,)(a?),y>) € —R{l)— \ {0}} ﬂK(S,f) = @

REMARK 2.2. Suppose that the constraint set S of (VP) is closed
and convex. If € S is a properly efficient solution of (VP), then z € S
is a solution of the following vector variational inequality:

(<Vf1(:i'), §— f>, cey <pr(a_c), s — :E>) ¢ —Ri \ {0}
for any s€ S.
The vector variational inequality can be found in [8].
We give an example illustrating Theorem 2.1.

EXAMPLE 2.1. Let fl($1,$2,$3) = Ty, fz(.’El,LEg,CL‘g) = x and
f(z1,z2,23) = (z1,22). Let S = {(z1,22,73) €R® | 29 2 —x1}.

Consider a vector optimization problem (VP):

Minimize flxy,z2,23)
subject to (z1,29,23) € S.

Let £ = (0,0,0). Then z is a properly efficient solution of (VP) and
K(S,(0,0,0)) = S. Then we have

A= {(v1,v2,v3)] {Vfi(0,0,0), (v1,v2,v3)) =0, i=1,2}
= {(U17U27U3)’ (l,0,0)t(Ul,Ug,Ug) = 07 (Oa 170)t(v1av2703) = O}
= {(0,0,’l)g)‘ v3 € ]R}

Hence AN K(S, (0,0,0)) = {(0,0,v3)| vs € R}.
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Also, we have

(ylayQayB) € K2(Sa (0,0,0), (O)OaUS))
<~ 3, — 0", W, v3,v%) — (1,92, 93)

1
st (0,0,0) +1a(0,0,u3) + Sta (v, v5,95) € S

— th - 0+a (y?aygayg) - (ylayZ,y3)

1 1 1
st. (Stadls 5tads, tavs + 5tays) €S

<= 3t, — 0", (¥7,95,v5) — (1,¥2,¥3)

1 1
s.t. Etiyg 2 —515121.74?

= Y2 2 —VY1-

Hence K2(S,(0,0,0),(0,0,v3)) = {(y1,¥2,93) € R® | y2 = —y1}. Let
v = (0,0, v3), where v3 € R. Then we have

{y | {(VA@),y) + (v, V2 fi(z)v) < 0}
N {y | (Vf2(E),y) + (v, V2 fo(Z)v) < 0}
= {y l (1,0,0)t(y1,y2;y3) < 0} n {illl (0, 1:0)t(y1,92,y3) < 0}
={y | 11 <0, y2 £0}.

Thus we have

{y ‘ <Vfl("1_:), y> + <U> V2f1(§7)v> < 0}
N{y | (Vf(E),y) + (v, V2 fo(Z)v) £ 0}
N K?(S,(0,0,0),v) = 0.

Similarly,
{y l <Vf2(-'1_3),y> + </U’ v2f2(j)v> < 0}
N {y | <Vf1 (j)7y> + <’UaV2fl(j)’U> § 0}
N K2(S,(0,0,0),v) = 0.
Thus the conclusion of Theorem 2.1 holds. O

The following example shows that Theorem 2.1 can not be extended
to the efficient solution of (VP).
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EXAMPLE 2.2. Let fi(z1,22,23) = z1, fo(z1,22,23) = o and
f(z1,22,x3) = (1, ®2). Let S = {(z1, 22, 23)| T2 = 22, z3 € R}. Con-
sider a vector optimization problem (VP):

Minimize f(z1, 22, x3)
subject to (z1,29,23) € S.

Then z = (0,0, 0) is an efficient solution of (VP), but not a properly ef-
ficient solution of (VP). Also, K(S,z) = {(z1,0, z3)|z1,z3 € R}. More-
over we have
{’U € R3| <Vf1(i‘), ('Ul, ’U2,U3)> =0, <Vf2(il—?), (Ul,Ug,’Ug)> = 0}

:{UER3 | v1 =0, v =0, v3 € R}

= {(0,0,v3) € R* | v3 € R}.
Thus
v:=(0,0,1) € {v € R} (Vf;(%), (v1,v2,v3)) =0, i =1,2}NK(S, ).
Also, we have

(ylv Y2, y3) € K2(S7 (0’ 07 0)1 (0, 07 1))
<= .= 0", (47,95,95) — (1,92, 43) st.
1
(0,0,0) +£4(0,0,1) + S#a (v, 45, 45) €
<= 3tn — 0", (u7,93,95) — (y1,%2,3) sit.

1 1 1, .
(?3@/?, §t721y’2‘, by + Etiy?,) €S
‘2 n T 1 1
= I, — 0", (W5, v8) — (¥1,92,¥3) st §tiy£‘ = Ztﬁ(y?)z
— y =0.

Hence we have
{y l <Vf1('f)7y> + <’U,V2f1(.7_3)1)> < 0}
N {yl (Vf2(Z),y) + {v, V f2(2)v) £ 0} N K?(S,(0,0,0),(0,0,1))
= {(y1,92,93)| 11 <0, y220, yse€ R}N{(y1,0,y3)] v1 € R,y3 € R}
# 0.

So, the conclusion of Theorem 2.1 does not hold. O
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We can easily obtain the following second order necessary optimality
condition for weakly efficient solutions of (VP):

THEOREM 2.2. Suppose that f;,i = 1,...,p, are twice differentiable.
Let & € S be a weakly efficient solution of (VP). If (V fi(Z),v) = 0,k =
1,...,p, and v € K(S,Z), then

{y | <Vfi(f),y> + <v, V2fi(a'c)v> <0,i=1,...,p}NK?*8,Z,v) = 0.

3. Nonsmooth versions of Theorems 2.1 and 2.2

In this section, using the arguments in the proofs of Ward and Lee
[11, 12], we obtain the nonsmooth versions of Theorems 2.1 and 2.2.

THEOREM 3.1 ([19], (Intersection Theorem)). Let S;, i =0,1,...,p
be a nonempty closed subset of R™ and z € (\;_, S;. Suppose that

p
> wi=0, y; € N(S;,2),i=0,1,...,p, imply y; =0, i=0,1,...,p.

i=0

Then we have

P Y4
K*(So,z,v) N[ ) T*(Si,2,v) € K*([) Si, 2, v).

i=1 1=0

Using the above Theorem 3.1, we can obtain the nonsmooth version
of Theorem 2.1 as follows.

THEOREM 3.2. Let the constraint set S of (VP) be a nonempty closed
subset of R" and Z € S, and suppose that the functions f;, i=1,...,p,
of (VP) are lower semicontinuous. Assume that

D
(31) Yz =0, 20 € N(8,%) and z € 0°f;(7), i=1,...,p
i=0
imply z; =0, i=0,1,...,p.
Let £ € S be a properly efficient solution of (VP). If f¥'(z;v) =
0, i=1,...,p, and v € K(S,Z), then for each i € {1,...,p},
(3.2)
{ul &£ (@ v,9) <0, df (Fv,y) S0, j#iFNK(S,2,0) =0.
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Proof. Let v be such that f (z;v) =0, i=1,...,p,and v € K (S, z).
Suppose that (3.2) is false. Reordering the f;, if necessary, we say that
there exists y € K?(S,#,v) such that

& fl(#;v,y) <0 and d?fT(z;0,y) L0, i=2,...,p.
Then we can choose r < 0 such that d? f{(Z;v,y) < r. Define
So:=8 xRP
and
Si = {(z,r1,...,7) ER"™P | fi(z) £}, i=1,...,p.

Since f; is lower semicontinuous, S; is closed. Since y € K%(S,z,v),
then (y,7,0,...,0) € K?(Sy, (7, f()), (v,0,...,0)).
Indeed,

y € K*(S,z,v)

1
e 3t, > 0", y, >y st. T+ t,0+ §tiyn €S

S (& Fu(@) s @) 4 £l0,0, . 0) + 282 (ys 70, ..., 0)

2
_ 1, _ 1, N B
= (CL‘ +t,v+ Etnyn,f] (55) + it"r’ f2(517), .- "fp(:c))
€ SxRP =9,

= (y,71,0,...,0) € K*(S0, (Z, /1(2), .., f(2)), (v,0,...,0)).

Since d*f{ (Z;v,y) < 7, (y,7) € epid?fT (Z;v,") = T*(epifi, (z, 1(Z)),
(v, ff'(z,v))). Hence we have (y,7,0,...,0) € T?(Sy, (z, f(@), (v,0,...,
0)) Since def(j;vvy) <0, 1= 27"'7pa then (y,O) € Tz(epifi,(ia
fi(®)), (v, fF(2,v)). So we have (y,7,0,...,0) € T?(S;, (&, f(z)), (v,0,
...,0)), i=2,...,p. Therefore, we have

(y,r,O,...,O)
D
€ K*(S0, (2, f(@)), (v,0,...,0) N [ T*(S:, (&, £(2)), (v,0,...,0)).
i=1
Let d; := (z3',di,...,d\) € N(S,(z, f(%), i = 0,1,...,p with
¥ odi = 0. We will prove that d; = 0, ¢ = 0,1,...,p. We notice
that

N(S0, (2, f(%))) = N(S,2) x N(R?, f(2))
— N(S,z) x {0}.
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Since dy € N(Sp, (Z, f(%))), a:(";o €N(S,z)and d) =0,i=1,...,p. We
can check that fori =1,...,p,
N(S;, (2, f(@)) = {(=% 01, yp) ER™P | 7 =0, j#1,
(z*,y;) € N(epifi, (, fi(2)))}.
Since d; € N(S, (7, (%)), ¢ = 1,...,p, then d% = 0, j # 4 and

(23',d) € N(epif;, (&, fi(%))). Since 38_od; = 0, then 3°0_ap’ = 0
and d; =0, i=1,...,p. Hence we have

p
> x5 =0, 23° € N(S,3) and x5’ € 0°£,(3), i=1,...,p.
=0

So, from assumption (3.1), zi’ =0, i =0,1,...,p. Consequently, d; =
0, i=0,1,...,p. Thus from Theorem 3.1, we have

p

(y,7,0,...,0) € K*([) Si, (&, £(2)), (v,0,...,0)).

i=0

So, there exist t, — 0%, (yn,7l...,72) — (y,7,0,...,0) such that
1 P
@, f1(&), -, Fo(Z)) + ta(v,0,...,0) + §t§(yn,r;,...,rg) €S
=0

that is,  + t,v + 12y, € S and

1 _ 1, . .
Fil@ + tav + 58hun) S Fi@) + 3t2rh, i= 1,0,

2
So, we have
1
(F1(2), - fo(@)) + 5t0(rns - 7R) € F(S) + RE.
Since (r},...,78) — (r,0,...,0), then we have

(r,0,...,0) € K(f(S) + R, f(Z)).

Since r < 0, we have K(f(S) + R%, f(z))N(—-R%) # {0}. Notice
that £ € § is properly efficient for (VP) if and only if K(f(S) +
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RE, f(2)) N(—RE) = {0} (see, [6, 25]). So, Z € S is not a properly
efficient solution of (VP). O

By Remarks 1.1 and 1.5, and Theorem 3.2, we can easily obtain the
following corollary.

COROLLARY 3.1. Let the constraint set S of (VP) be a nonempty
closed subset of R™, and suppose that the functions f;,i = 1,...,p, of
(VP) are locally Lipschitzian. Let T € S be a properly efficient solution
of (VP). If fH(z;v) =0, i =1,...,p and v € K(S,%), then for each
te{l,...,n},

{y | &f(&v,y) <0, d®F (z;v,y) £0, j#itNK2(S,z,v) = 0.

By Remarks 1.2 and 1.4, and Theorem 3.2, we can obtain the following
first order necessary optimality theorem for a properly efficient solution
of (VP).

COROLLARY 3.2. Let the constraint set S of (VP) be a nonempty
closed subset of R"™ and T € S, and suppose that the functions f;, © =
1,...,p, of (VP) are lower semicontinuous. Assume that

z; =0, Z()EN(S,CE) and zi€0°°fi(:1‘c), i=1,...,p

M~

i=0
imply z;, =0, i=0,1,...,p, and v =0.

Let Z € S be a properly efficient solution of (VP). If fI'(%;0) = 0,i =
1,...,p, then for eachi € {1,...,p},

{yl ff(zy) <0, fl(z;y) 20, j#£iNK(S,z)=0.

Following the proofs of Ward and Lee [11, 12], we obtain the following
second order necessary optimality theorem for weakly efficient solutions
of the vector optimization problem (VP).

THEOREM 3.3. Let the constraint set S of (VP) be a nonempty closed
subset of R™ and T € S, and suppose that the functions f;, i=1,...,p,
of (VP) are lower semicontinuous. Assume that

P
(33) > z=0, z€N(S,z) and 2 € 9°fi(Z), i=1,...,p

=0
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imply z; =0, :=0,1,...,p.
Let Z € S be a weakly efficient solution of (VP). If fI(z;v) =0, i=
1,...,pand v € K(S,%),

(3.4) {yl &ff(@50,y) <0, i=1,...,p} N K*(S,z,0) = 0.

Proof. Let v be such that f7(%;v) =0, i=1,...,p,and v € K(S, T).
Suppose that (3.4) is false. Then there exists y € K*(S, %, v) such that

A (z;v,y) <0, i=1,...,p.

Then we can choose r; < 0 such that d*>fI(z;v,y) <7, i=1,...,p.
Define
SO =S5 x RP

and
S ={(z,r1,...,mp) ER™P | fi(z) S}, i=1,...,p

Since f; is lower semicontinuous, S; is closed. Since y € K?(S,z,v),
then (y,71,...,7p) € K2(So, (Z, f(Z)), (v,0,...,0)). Since d? fI (z;v,y)
< 1y (W) € epidfl(Tv,) = Tepifi, (@ fi(8)): (v, 17 (7,0)).
Hence we have (y,r1,...,7,) € T*(S;, (T, f(Z)), (v,0,...,0)). Therefore,
we have

(y,Tl,...,'I‘p)

€ K*(So, (2, f(2)), (v,0,...,0) N[ T2(S;, (&, £(3)), (v,0,...,0)).
1=1

Let d; := (zf',di,...,d)) € N(S;, (%, f(&)), i = 0,1,...,p with
P _odi = 0. By the same argument in the proof of Theorem 3.2, we
can prove that d; =0, ¢=0,1,...,p. Thus from Theorem 3.1, we have

p

¥71,--.,1p) € K2([) Sir (2, £(2)), (v,0,....,0)).
i=0
So, there exist t, — 0%, (yn,7},...,78) — (y,71,...,7p), 7 < 0 such
that

p

1
(@, f1(@), 2 Fp(@) + tn(0,0,..,0) + S8 (g, 7, 78) € (] Si
=0
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n

that is,  + t,,v + %tz Y, € S and

1 1 )
Fi@ + tav + St2un) £ fi(@) + 515%7’2, t=1...,p.

2
Since rl, <0, i=1,...,p, then fi(£+tnv+%—t%yn) < fi(z). Thusz € S
is not weakly efficient for (VP). O

By Remarks 1.1 and 1.5, and Theorem 3.3, we can easily obtain the
following corollary.

COROLLARY 3.3. Let the constraint set S of (VP) be a nonempty
closed subset of R", and suppose that the functions f;, i =1,...,p, of
(VP) are locally Lipschitzian. Let T € S be a weakly efficient solution
of (VP). If fH (z;v) =0, i=1,...,p and v € K(S,%), then

{y | &£ (@;v,y) <0, i=1,...,p}NK?*S,z,v) =0.

By Remarks 1.2 and 1.4, and Theorem 3.3, we can obtain the following
first order necessary optimality theorem for a weakly efficient solution
of (VP).

COROLLARY 3.4 ([12]). Let the constraint set S of (VP) be a nonemp-
ty closed subset of R™ and T € S, and suppose that the functions f;, i =
1,...,p, of (VP) are lower semicontinuous. Assume that

p
Y 2 =0, 20 € N(S,7) and 2 €8 fi(z), i=1,...,p

=0
imply z; =0, ¢t=0,1,...,p.

Let Z € S be a weakly efficient solution of (VP). If f¥(z;0) = 0,i =
1,...,p, then

{y | fH(zy) <0, i=1,...,p}NK(S,z) =0.
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