Acknowledgement
Supported by : Natural Science Foundation of China
References
- R.Hettich, K.O.Kortanek, Semi-infinite programming: theory, methods, and applications , SIAM J. Optimization, 35 (3) (1993), 380-429.
- C. Lemarechal, F. Oustry, and C. Sagastizabal, The U-Lagrangian of a convex function, Trans. Amer. Math. Soc., 352 (2000), 711-729. https://doi.org/10.1090/S0002-9947-99-02243-6
- R. Mifflin and C. Sagastizabal, VU-decomposition derivatives for convex max-functions, In: Ill-posed Variational Problems and Regularization Techniques by Tichatschke and Thera (eds), Lecture Notes in Economics and Mathematical Systems 477 (1999), 167-186.
- R. Mifflin and C. Sagastizabal, Proximal points are on the fast track, Journal of Convex Analysis, 9 (2) (2002), 563-579.
- R. Mifflin and C. Sagastizabal, VU-smoothness and proximal point results for some non-convex functions, Optimization Methods and Software, 19 (5) (2004), 463-478. https://doi.org/10.1080/10556780410001704902
- R. Mifflin and C. Sagastizabal, On VU-theory for functions with primal-dual gradient structure, SIAM J. Optimization, 11 (2) (2000), 547-571. https://doi.org/10.1137/S1052623499350967
- R. Mifflin and C. Sagastizabal, Primal-dual gradient structured functions: second-order results; links to epi-derivatives and partly smooth functions, SIAM J. Optimization, 13 (2003), 1174-1197. https://doi.org/10.1137/S1052623402412441
- C. Lemarechal and C. Sagastizabal, Practical aspects of the Moreau-Yosida regulation: theoretical preliminaries, SIAM J. Optimization, 7 (2) (1997), 367-385. https://doi.org/10.1137/S1052623494267127
- R. Mifflin and C. Sagastizabal, A VU-algorithm for convex minimization, Math. Program., Ser. B, 104 (2005), 583-608. https://doi.org/10.1007/s10107-005-0630-3
- E. Polak, Optimization: Algorithms and Consistent Approximations, New York: Springer, (1997).
- J.-B. Hiriart-Urruty and C. Lemarchal, Convex Analysis and Minimization Algorithms I-II , Springer-Verlag, Berlin (1996).